67 research outputs found

    PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells

    Get PDF
    Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour

    PPARγ agonists inhibit growth and expansion of CD133+ brain tumour stem cells

    Get PDF
    Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPARγ) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARγ agonist, 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARγ in gliosphere cells. These findings demonstrate that PPARγ agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour

    Impact and relationship of anterior commissure and time-dose factor on the local control of T1N0 glottic cancer treated by 6 MV photons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate prognostic factors that may influence local control (LC) of T1N0 glottic cancer treated by primary radiotherapy (RT) with 6 MV photons.</p> <p>Methods</p> <p>We retrospectively reviewed the medical records of 433 consecutive patients with T1N0 glottic cancer treated between 1983 and 2005 by RT in our institution. All patients were treated with 6 MV photons. One hundred and seventy seven (41%) patients received 52.5 Gy in 23 fractions with 2.5 Gy/fraction, and 256 (59%) patients received 66 Gy in 33 fractions with 2 Gy/fraction.</p> <p>Results</p> <p>The median follow-up time was 10.5 years. The 10-year LC rates were 91% and 87% for T1a and T1b respectively. Multivariate analysis showed LC rate was adversely affected by poorly differentiated histology (Hazard Ratio [HR]: 7.5, <it>p </it>= 0.035); involvement of anterior commissure (HR: 2.34, <it>p </it>= 0.011); fraction size of 2.0 Gy (HR: 2.17, <it>p </it>= 0.035) and tumor biologically effective dose (BED) < 65 Gy<sub>15 </sub>(HR: 3.38, <it>p </it>= 0.017).</p> <p>Conclusions</p> <p>The negative impact of anterior commissure involvement could be overcome by delivering a higher tumor BED through using fraction size of > 2.0 Gy. We recommend that fraction size > 2.0 Gy should be utilized, for radiation schedules with five daily fractions each week.</p

    Antineoplastic effects of rosiglitazone and PPARγ transactivation in neuroblastoma cells

    Get PDF
    Neuroblastoma (NB) is the most common extracranial solid tumour in infants. Unfortunately, most children present with advanced disease and have a poor prognosis. In the present study, we evaluated the role of the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (RGZ) in two NB cell lines (SK-N-AS and SH-SY5Y), which express PPARγ. Rosiglitazone decreased cell proliferation and viability to a greater extent in SK-N-AS than in SH-SY5Y. Furthermore, 20 μM RGZ significantly inhibited cell adhesion, invasiveness and apoptosis in SK-N-AS, but not in SH-SY5Y. Because of the different response of SK-N-AS and SH-SY5Y cells to RGZ, the function of PPARγ as a transcriptional activator was assessed. Noticeably, transient transcription experiments with a PPARγ responsive element showed that RGZ induced a three-fold increase of the reporter activity in SK-N-AS, whereas no effect was observed in SH-SY5Y. The different PPARγ activity may be likely due to the markedly lower amount of phopshorylated (i.e. inactive) protein observed in SK-N-AS. To our knowledge, this is the first demonstration that the differential response of NB cells to RGZ may be related to differences in PPARγ transactivation. This finding indicates that PPARγ activity may be useful to select those patients, for whom PPARγ agonists may have a beneficial therapeutic effect
    • …
    corecore