8 research outputs found

    Instability of short arm of acrocentric chromosomes : Lesson from non-acrocentric satellited chromosomes. Report of 24 unrelated cases

    Get PDF
    Satellited non-acrocentric autosomal chromosomes (ps-qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps-qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome

    iPSC-derived neurons of CREBBP- and EP300-mutated Rubinstein-Taybi syndrome patients show morphological alterations and hypoexcitability

    Get PDF
    Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder characterized by distinctive facial features, growth retardation, broad thumbs and toes and mild to severe intellectual disability, caused by heterozygous mutations in either CREBBP or EP300 genes, encoding the homologous CBP and p300 lysine-acetyltransferases and transcriptional coactivators. No RSTS in vitro induced Pluripotent Stem Cell (iPSC)-neuronal model is available yet to achieve mechanistic insights on cognitive impairment of RSTS patients. We established iPSC-derived neurons (i-neurons) from peripheral blood cells of three CREBBP- and two EP300-mutated patients displaying different levels of intellectual disability, and four unaffected controls. Pan neuronal and cortical-specific markers were expressed by all patients' i-neurons. Altered morphology of patients' differentiating neurons, showing reduced branch length and increased branch number, and hypoexcitability of differentiated neurons emerged as potential disease biomarkers. Anomalous neuronal morphology and reduced excitability varied across different RSTS patients' i-neurons. Further studies are needed to validate these markers and assess whether they reflect cognitive and behavioural impairment of the donor patients

    Ring Chromosome 20 Syndrome : Genetics, Clinical Characteristics, and Overlapping Phenotypes

    No full text
    Ring chromosome 20 [r(20)] syndrome is a rare condition characterized by a non-supernumerary ring chromosome 20 replacing a normal chromosome 20. It is commonly seen in a mosaic state and is diagnosed by means of karyotyping. r(20) syndrome is characterized by a recognizable epileptic phenotype with typical EEG pattern, intellectual disability manifesting after seizure onset in otherwise normally developing children, and behavioral changes. Despite the distinctive phenotype, many patients still lack a diagnosis\u2014especially in the genomic era\u2014and the pathomechanisms of ring formation are poorly understood. In this review we address the genetic and clinical aspects of r(20) syndrome, and discuss differential diagnoses and overlapping phenotypes, providing the reader with useful tools for clinical and laboratory practice. We also discuss the current issues in understanding the mechanisms through which ring 20 chromosome causes the typical manifestations, and present unpublished data about methylation studies. Ultimately, we explore future perspectives of r(20) research. Our intended audience is clinical and laboratory geneticists, child and adult neurologists, and genetic counselors

    7p22.1 microduplication syndrome : clinical and molecular characterization of an adult case and review of the literature

    No full text
    A new 7p22.1 microduplication syndrome characterized by intellectual disability, speech delay and craniofacial dysmorphisms, such as macrocephaly, hypertelorism and ear anomalies, has been outlined by the description of two patients with interstitial microduplications confined to 7p22.1 and the recently defined minimal overlapping 430kb critical region including five genes. Here we report on the first adult patient aged 35 years with moderate intellectual disability, psychomotor delay, facial dysmorphisms, cryptorchidism and cardiac anomalies, who carries two close microduplications at 7p22.1 of about 900 and 150kb, respectively. The proximal smaller duplication includes three coding genes and maps outside the minimal described overlapping duplicated region, while the larger one represents the smallest 7p22.1 microduplication reported so far, as it encompasses the entire minimal region with only four additional genes. We compare the phenotype of our patient with that of the few reported cases and discuss on candidate genes in order to enhance the knowledge on genotype-phenotype correlation in 7p22.1 duplication syndrome

    12q21 Interstitial Deletions: Seven New Syndromic Cases Detected by Array-CGH and Review of the Literature

    Get PDF
    Interstitial deletions of the long arm of chromosome 12 are rare, with a dozen patients carrying a deletion in 12q21 being reported. Recently a critical region (CR) has been delimited and could be responsible for the more commonly described clinical features, such as developmental delay/intellectual disability, congenital genitourinary and brain malformations. Other, less frequent, clinical signs do not seem to be correlated to the proposed CR. We present seven new patients harboring non-recurrent deletions ranging from 1 to 18.5 Mb differentially scattered across 12q21. Alongside more common clinical signs, some patients have rarer features such as heart defects, hearing loss, hypotonia and dysmorphisms. The correlation of haploinsufficiency of genes outside the CR to specific signs contributes to our knowledge of the effect of the deletion of this gene-poor region of chromosome 12q. This work underlines the still important role of copy number variations in the diagnostic setting of syndromic patients and the positive reflection on management and family genetic counseling

    Testing single/combined clinical categories on 5110 Italian patients with developmental phenotypes to improve array-based detection rate

    No full text
    Background: Chromosomal microarray analysis (CMA) is nowadays widely used in the diagnostic path of patients with clinical phenotypes. However, there is no ascertained evidence to date on how to assemble single/combined clinical categories of developmental phenotypic findings to improve the array-based detection rate. Methods: The Italian Society of Human Genetics coordinated a retrospective study which included CMA results of 5,110 Italian patients referred to 17 genetics laboratories for variable combined clinical phenotypes. Results: Non-polymorphic copy number variants (CNVs) were identified in 1512 patients (30%) and 615 (32%) present in 552 patients (11%) were classified as pathogenic. CNVs were analysed according to type, size, inheritance pattern, distribution among chromosomes, and association to known syndromes. In addition, the evaluation of the detection rate of clinical subgroups of patients allowed to associate dysmorphisms and/or congenital malformations combined with any other single clinical sign to an increased detection rate, whereas non-syndromic neurodevelopmental signs and non-syndromic congenital malformations to a decreased detection rate. Conclusions: Our retrospective study resulted in confirming the high detection rate of CMA and indicated new clinical markers useful to optimize their inclusion in the diagnostic and rehabilitative path of patients with developmental phenotypes

    Cdc14 Inhibition by the Spindle Assembly Checkpoint Prevents Unscheduled Centrosome Separation in Budding Yeast

    No full text
    The spindle assembly checkpoint (SAC) is an evolutionarily conserved surveillance mechanism that delays anaphase onset and mitotic exit in response to the lack of kinetochore attachment. The target of the SAC is the E3 ubiquitin ligase anaphase-promoting complex (APC) bound to its Cdc20 activator. The Cdc20/APC complex is in turn required for sister chromatid separation and mitotic exit through ubiquitin-mediated proteolysis of securin, thus relieving inhibition of separase that unties sister chromatids. Separase is also involved in the Cdc-fourteen early anaphase release (FEAR) pathway of nucleolar release and activation of the Cdc14 phosphatase, which regulates several microtubule-linked processes at the metaphase/anaphase transition and also drives mitotic exit. Here, we report that the SAC prevents separation of microtubule-organizing centers (spindle pole bodies [SPBs]) when spindle assembly is defective. Under these circumstances, failure of SAC activation causes unscheduled SPB separation, which requires Cdc20/APC, the FEAR pathway, cytoplasmic dynein, and the actin cytoskeleton. We propose that, besides inhibiting sister chromatid separation, the SAC preserves the accurate transmission of chromosomes also by preventing SPBs to migrate far apart until the conditions to assemble a bipolar spindle are satisfied
    corecore