3,092 research outputs found

    Non-Hermitian description of a superconducting phase qubit measurement

    Full text link
    We present an approach based on a non-Hermitian Hamiltonian to describe the process of measurement by tunneling of a phase qubit state. We derive simple analytical expressions which describe the dynamics of measurement, and compare our results with those experimentally available.Comment: 8 pages, 4 figure

    Petrographic and crystallographic study of silicate minerals in lunar rocks

    Get PDF
    Optical U-stage measurements, chemical microprobe data, and X-ray procession photographs of a bytownite twin group from rock 12032,44 are compared. Sharp but weak b and no c-reflections were observed for this An89 bytownite indicating a partly disordered structure. Euler angles, used to characterize the orientation of the optical indicatrix, compare better with values for plutonic than for volcanic plagioclase. This indicates that structural and optical properties cannot be directly correlated

    Decoherence of a two-state atom driven by coherent light

    Full text link
    Recent studies of the decoherence induced by the quantum nature of the laser field driving a two-state atom [J. Gea-Banacloche, Phys. Rev. A 65, 022308 (2002); S. J. van Enk and H. J. Kimble, Quantum Inf. and Comp. 2, 1 (2002)] have been questioned by Itano [W. M. Itano, Phys. Rev. A 68, 046301 (2003)] and the proposal made that all decoherence is due to spontaneous emission. We analyze the problem within the formalism of cascaded open quantum systems. Our conclusions agree with the Itano proposal. We show that the decoherence, nevertheless, may be divided into two parts--that due to forwards scattering and to scattering out of the laser mode. Previous authors attribute the former to the quantum nature of the laser field.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Memory in the Photon Statistics of Multilevel Quantum Systems

    Full text link
    The statistics of photons emitted by single multilevel systems is investigated with emphasis on the nonrenewal characteristics of the photon-arrival times. We consider the correlation between consecutive interphoton times and present closed form expressions for the corresponding multiple moment analysis. Based on the moments a memory measure is proposed which provides an easy way of gaging the non-renewal statistics. Monte-Carlo simulations demonstrate that the experimental verification of non-renewal statistics is feasible.Comment: 5 pages, 3 figure

    Asymmetric quantum dot in microcavity as a nonlinear optical element

    Get PDF
    We have investigated theoretically the interaction between individual quantum dot with broken inversion symmetry and electromagnetic field of a single-mode quantum microcavity. It is shown that in the strong coupling regime the system demonstrates nonlinear optical properties and can serve as emitter of the terahertz radiation at Rabi frequency of the system. Analytical results for simplest physical situations are obtained and numerical quantum approach for calculating emission spectrum is developed.Comment: Article is accepted to Phys. Rev. A (7 pages, 5 figures

    Point-of-Care Manufacture: Regulatory Opportunities and Challenges for Advanced Biotherapeutics

    Get PDF
    On 29 June 2021, UCL’s Future Targeted Healthcare Manufacturing Hub (FTHMH) held an online workshop to discuss the concepts and rationale of a new point-of-care (POC) manufacturing regulatory framework in development by the UK’s Medicines and Healthcare products Regulatory Agency (MHRA). The proposal, which seeks to address the unique challenges of manufacturing healthcare products at, (or close to), the POC, is anticipated for publication and public consultation in summer 2021

    The Accuracy of Perturbative Master Equations

    Full text link
    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations, and we show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.Comment: 6 pages, 0 figures; v2 updated references; v3 updated references, extension to full-time and nonlocal regime

    Preparation information and optimal decompositions for mixed quantum states

    Get PDF
    Consider a joint quantum state of a system and its environment. A measurement on the environment induces a decomposition of the system state. Using algorithmic information theory, we define the preparation information of a pure or mixed state in a given decomposition. We then define an optimal decomposition as a decomposition for which the average preparation information is minimal. The average preparation information for an optimal decomposition characterizes the system-environment correlations. We discuss properties and applications of the concepts introduced above and give several examples.Comment: 13 pages, latex, 2 postscript figure

    Non-Markovian Quantum Trajectories Versus Master Equations: Finite Temperature Heat Bath

    Full text link
    The interrelationship between the non-Markovian stochastic Schr\"odinger equations and the corresponding non-Markovian master equations is investigated in the finite temperature regimes. We show that the general finite temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite temperature reservoir in the rotating wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity and unity.Comment: 19 pages, typos corrected, references adde
    • …
    corecore