5,920 research outputs found

    The Effects of High Liquid Water Content on Thunderstorm Charging

    No full text
    Charge transfer to a riming graupel target during interactions with ice crystals has been investigated in the laboratory. When liquid water contents sufficiently high to cause wet growth are achieved, the charge transfer falls to values which are insignificant to thunderstorm electrification. The implications of this null result to a recent analysis of thunderstorm-charging processes by Wiliams et al. (1991) are discussed

    Time-domain Brillouin Scattering as a Local Temperature Probe in Liquids

    Full text link
    We present results of time-domain Brillouin scattering (TDBS) to determine the local temperature of liquids in contact to an optical transducer. TDBS is based on an ultrafast pump-probe technique to determine the light scattering frequency shift caused by the propagation of coherent acoustic waves in a sample. Since the temperature influences the Brillouin scattering frequency shift, the TDBS signal probes the local temperature of the liquid. Results for the extracted Brillouin scattering frequencies recorded at different liquid temperatures and at different laser powers - i.e. different steady state background temperatures- are shown to demonstrate the usefulness of TDBS as a temperature probe. This TDBS experimental scheme is a first step towards the investigation of ultrathin liquids measured by GHz ultrasonic probing.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0107

    Quintessence Models and the Cosmological Evolution of alpha

    Full text link
    The cosmological evolution of a quintessence-like scalar field, phi, coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(phi) and the couplings to matter B(phi) admit common extremum in phi, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(phi), the observational constraints on delta alpha/alpha coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.Comment: 26 pages, 20 eps figure

    Update on the Direct Detection of Supersymmetric Dark Matter

    Full text link
    We compare updated predictions for the elastic scattering of supersymmetric neutralino dark matter with the improved experimental upper limit recently published by CDMS II. We take into account the possibility that the \pi-nucleon \Sigma term may be somewhat larger than was previously considered plausible, as may be supported by the masses of exotic baryons reported recently. We also incorporate the new central value of m_t, which affects indirectly constraints on the supersymmetric parameter space, for example via calculations of the relic density. Even if a large value of \Sigma is assumed, the CDMS II data currently exclude only small parts of the parameter space in the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking Higgs, squark and slepton masses. None of the previously-proposed CMSSM benchmark scenarios is excluded for any value of \Sigma, and the CDMS II data do not impinge on the domains of the CMSSM parameter space favoured at the 90 % confidence level in a recent likelihood analysis. However, some models with non-universal Higgs, squark and slepton masses and neutralino masses \lappeq 700 GeV are excluded by the CDMS II data.Comment: 25 pages, 28 eps figure

    Non-universal scalar-tensor theories and big bang nucleosynthesis

    Full text link
    We investigate the constraints that can be set from big-bang nucleosynthesis on two classes of models: extended quintessence and scalar-tensor theories of gravity in which the equivalence principle between standard matter and dark matter is violated. In the latter case, and for a massless dilaton with quadratic couplings, the phase space of theories is investigated. We delineate those theories where attraction toward general relativity occurs. It is shown that big-bang nucleosynthesis sets more stringent constraints than those obtained from Solar system tests.Comment: 28 pages, 20 figure

    Evolving Marine Biosecurity in the Galapagos Islands

    Get PDF
    Some of my co-authors and I have just returned from one of the paradises on earth and a natural history mecca – The Galapagos Islands, Ecuador

    Digital media inhibit self-regulatory private speech use in preschool children: The “digital bubble effect”

    Get PDF
    Preschoolers spend much time with digital media and some are concerned about impacts on language development. Private speech (PS) is self-talk children use during play, representing a necessary form of self-regulation. This study examined whether modality (material vs. digital) matters for children's PS. Twenty-nine White 5-yr-olds (52% female) completed the Tower of London task twice - once as a material version and once on a tablet. Children used more PS on the material than digital version of the task (d=0.46). During the material task, the typical pattern of increased PS as difficulty increased appeared. However, during the digital task, PS declined as difficulty increased. Digital games may inhibit children's use of PS for self-regulation, having implications for executive function development

    Observations of Rapid Disk-Jet Interaction in the Microquasar GRS 1915+105

    Full text link
    We present evidence that ~ 30 minute episodes of jet formation in the Galactic microquasar GRS 1915+105 may sometimes entirely be a superposition of smaller, faster phenomena. We base this conclusion on simultaneous X-ray and infrared observations in July 2002, using the Rossi X-ray Timing Explorer and the Palomar 5 meter telescope. On two nights, we observed quasi-periodic infrared flares from GRS 1915+105, each accompanied by a set of fast oscillations in the X-ray light curve (indicating an interaction between the jet and accretion disk). In contrast to similar observations in 1997, we find that the duration of each X-ray cycle matches the duration of its accompanying infrared flare, and we observed one instance in which an isolated X-ray oscillation occurred at the same time as a faint infrared "subflare" (of duration ~ 150 seconds) superimposed on one of the main flares. From these data, we are able to conclude that each X-ray oscillation had an associated faint infrared flare and that these flares blend together to form, and entirely comprise, the ~ 30 minute events we observed. Part of the infrared emission in 1997 also appears to be due to superimposed small flares, but it was overshadowed by infrared-bright ejections associated with the appearance of a sharp "trigger" spike in each X-ray cycle that were not present in 2002. We also study the evolution of the X-ray spectrum and find significant differences in the high energy power law component, which was strongly variable in 1997 but not in 2002. Taken together, these observations reveal the diversity of ways in which the accretion disk and jet in black hole systems are capable of interacting and solidify the importance of the trigger spike for large ejections to occur on ~ 30 minute timescales in GRS 1915+105.Comment: 17 pages, 9 figures; accepted for publication in The Astrophysical Journa

    Gravity Dual of Gauge Theory on S^2 x S^1 x R

    Full text link
    We (numerically) construct new static, asymptotically AdS solutions where the conformal infinity is the product of time and S^2 x S^1. There always exist a family of solutions in which the S^1 is not contractible and, for small S^1, there are two additional families of solutions in which the S^1 smoothly pinches off. This shows that (when fermions are antiperiodic around the S^1) there is a quantum phase transition in the gauge theory as one decreases the radius of the S^1 relative to the S^2. We also compare the masses of our solutions and argue that the one with lowest mass should minimize the energy among all solutions with conformal boundary S^2 x S^1 x R. This provides a new positive energy conjecture for asymptotically locally AdS metrics. A simple analytic continuation produces AdS black holes with topology S^2 x S^1.Comment: 17 pages, 4 figures, v2: minor changes, added reference
    • …
    corecore