5,195 research outputs found
A theoretical look at the direct detection of giant planets outside the Solar System
Astronomy is at times a science of unexpected discovery. When it is, and if
we are lucky, new intellectual territories emerge to challenge our views of the
cosmos. The recent indirect detections using high-precision Doppler
spectroscopy of now more than one hundred giant planets orbiting more than one
hundred nearby stars is an example of such rare serendipity. What has been
learned has shaken our preconceptions, for none of the planetary systems
discovered to date is like our own. However, the key to unlocking a planet's
chemical, structural, and evolutionary secrets is the direct detection of the
planet's light. I review the embryonic theory of the spectra, atmospheres, and
light curves of irradiated giant planets and put this theory into the context
of the many proposed astronomical campaigns to image them.Comment: pre-editorial, non-copyrighted version of Review Article just
published in Nature. 5 figures, one in JPEG forma
Optical spectroscopy of a brown dwarf candidate
We have used the Low-Resolution Imaging Spectrograph on the Keck II telescope
to observe the brown dwarf candidate D04 (Hawkins et al, 1998). The spectrum
matches that of a spectral-type M7 dwarf, implying a photospheric temperature
of K. This is consistent with the available (R-I) and (I-K)
colours. If the parallax measured by Hawkins et al is correct, then the
implication is that D04 has a radius of , or one-third that
of Jupiter. This contradicts the predictions made by current stellar models
that electron degeneracy leads to nearly constant radii for stars and brown
dwarfs at masses below 0.1 M. We suggest that an equally valid
interpretation of the data is that D04 is a VB8 analogue at a distance of
parsecs.Comment: to appear in MNRAS, pink pages; 6 pages with 1 jpg, 1 postscript
figur
Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b
We calculate the planet-star flux-density ratios as a function of wavelength
from 0.5 microns to 25 microns for the transiting extrasolar giant planets
TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS
secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three
data points and generic calibration issues, detailed conclusions are difficult,
but inferences regarding atmospheric composition, temperature, and global
circulation can be made. Our models reproduce the observations reasonably well,
but not perfectly, and we speculate on the theoretical consequences of
variations around our baseline models. One preliminary conclusion is that we
may be seeing in the data indications that the day side of a close-in
extrasolar giant planet is brighter in the mid-infrared than its night side,
unlike Jupiter and Saturn. This correspondence will be further tested when the
data anticipated in other Spitzer bands are acquired, and we make predictions
for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical
Journa
Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data
We present theoretical atmosphere, spectral, and light-curve models for
extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it
Spitzer} planet/star contrast ratios or light curves have been published (circa
June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD
179949b, and And b. By comparing models with data, we find that a
number of EGP atmospheres experience thermal inversions and have stratospheres.
This is particularly true for HD 209458b, HD 149026b, and And b.
This finding translates into qualitative changes in the planet/star contrast
ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover,
the presence of atmospheric water in abundance is fully consistent with all the
{\it Spitzer} data for the measured planets. For planets with stratospheres,
water absorption features invert into emission features and mid-infrared fluxes
can be enhanced by a factor of two. In addition, the character of near-infrared
planetary spectra can be radically altered. We derive a correlation between the
importance of such stratospheres and the stellar flux on the planet, suggesting
that close-in EGPs bifurcate into two groups: those with and without
stratospheres. From the finding that TrES-1 shows no signs of a stratosphere,
while HD 209458b does, we estimate the magnitude of this stellar flux
breakpoint. We find that the heat redistribution parameter, P, for the
family of close-in EGPs assumes values from 0.1 to 0.4. This paper
provides a broad theoretical context for the future direct characterization of
EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8
figures, many with multiple panel
Possible Solutions to the Radius Anomalies of Transiting Giant Planets
We calculate the theoretical evolution of the radii of all fourteen of the
known transiting extrasolar giant planets (EGPs) for a variety of assumptions
concerning atmospheric opacity, dense inner core masses, and possible internal
power sources. We incorporate the effects of stellar irradiation and customize
such effects for each EGP and star. Looking collectively at the family as a
whole, we find that there are in fact two radius anomalies to be explained. Not
only are the radii of a subset of the known transiting EGPs larger than
expected from previous theory, but many of the other objects are smaller than
the default theory would allow. We suggest that the larger EGPs can be
explained by invoking enhanced atmospheric opacities that naturally retain
internal heat. This explanation might obviate the necessity for an extra
internal power source. We explain the smaller radii by the presence in perhaps
all the known transiting EGPs of dense cores, such as have been inferred for
Saturn and Jupiter. Importantly, we derive a rough correlation between the
masses of our "best-fit" cores and the stellar metallicity that seems to
buttress the core-accretion model of their formation. Though many caveats and
uncertainties remain, the resulting comprehensive theory that incorporates
enhanced-opacity atmospheres and dense cores is in reasonable accord with all
the current structural data for the known transiting giant planets.Comment: 22 pages in emulateapj format, including 10 figures (mostly in
color), accepted to the Astrophysical Journal (February 9, 2007); to appear
in volume 661, June 200
Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands
We find that a theoretical fit to all the HD 209458b data at secondary
eclipse requires that the dayside atmosphere of HD 209458b have a thermal
inversion and a stratosphere. This inversion is caused by the capture of
optical stellar flux by an absorber of uncertain origin that resides at
altitude. One consequence of stratospheric heating and temperature inversion is
the flipping of water absorption features into emission features from the near-
to the mid-infrared and we see evidence of such a water emission feature in the
recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere
optical absorber may help explain both the weaker-than-expected Na D feature
seen in transit and the fact that the transit radius at 24 m is smaller
than the corresponding radius in the optical. Moreover, it may be a factor in
why HD 209458b's optical transit radius is as large as it is. We speculate on
the nature of this absorber and the planets whose atmospheres may, or may not,
be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six
pages in emulateapj forma
Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets
We have created a general methodology for calculating the
wavelength-dependent light curves of close-in extrasolar giant planets (EGPs)
as they traverse their orbits. Focussing on the transiting EGPs HD189733b,
TrES-1, and HD209458b, we calculate planet/star flux ratios during secondary
eclipse and compare them with the Spitzer data points obtained so far in the
mid-infrared. We introduce a simple parametrization for the redistribution of
heat to the planet's nightside, derive constraints on this parameter (P_n), and
provide a general set of predictions for planet/star contrast ratios as a
function of wavelength, model, and phase. Moreover, we calculate average
dayside and nightside atmospheric temperature/pressure profiles for each
transiting planet/P_n pair with which existing and anticipated Spitzer data can
be used to probe the atmospheric thermal structure of severely irradiated EGPs.
We find that the baseline models do a good job of fitting the current secondary
eclipse dataset, but that the Spitzer error bars are not yet small enough to
discriminate cleanly between all the various possibilities.Comment: 14 figures, 7 text pages (in two-column emulateapj format); Accepted
to the Ap.J. June 26, 2006; one cosmetic change made to astro-ph version
Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b
We calculate a new suite of albedo models for close-in extrasolar giant
planets and compare with the recent stringent upper limit for HD 209458b of
Rowe et al. using MOST. We find that all models without scattering clouds are
consistent with this optical limit. We explore the dependence on wavelength and
waveband, metallicity, the degree of heat redistribution, and the possible
presence of thermal inversions and find a rich diversity of behaviors.
Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths
by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band
missions, can complement measurements in the near- and mid-IR using {\it
Spitzer} and JWST. Collectively, such measurements can help determine
metallicity, compositions, atmospheric temperatures, and the cause of thermal
inversions (when they arise) for EGPs with a broad range of radii, masses,
degrees of stellar insolation, and ages. With this paper, we reappraise and
highlight the diagnostic potential of albedo measurements of hot EGPs shortward
of 1.3 m.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical
Journa
- …
