5,195 research outputs found

    A theoretical look at the direct detection of giant planets outside the Solar System

    Full text link
    Astronomy is at times a science of unexpected discovery. When it is, and if we are lucky, new intellectual territories emerge to challenge our views of the cosmos. The recent indirect detections using high-precision Doppler spectroscopy of now more than one hundred giant planets orbiting more than one hundred nearby stars is an example of such rare serendipity. What has been learned has shaken our preconceptions, for none of the planetary systems discovered to date is like our own. However, the key to unlocking a planet's chemical, structural, and evolutionary secrets is the direct detection of the planet's light. I review the embryonic theory of the spectra, atmospheres, and light curves of irradiated giant planets and put this theory into the context of the many proposed astronomical campaigns to image them.Comment: pre-editorial, non-copyrighted version of Review Article just published in Nature. 5 figures, one in JPEG forma

    Optical spectroscopy of a brown dwarf candidate

    Get PDF
    We have used the Low-Resolution Imaging Spectrograph on the Keck II telescope to observe the brown dwarf candidate D04 (Hawkins et al, 1998). The spectrum matches that of a spectral-type M7 dwarf, implying a photospheric temperature of 2600\approx 2600K. This is consistent with the available (R-I)C_C and (I-K) colours. If the parallax measured by Hawkins et al is correct, then the implication is that D04 has a radius of 0.035R\sim 0.035 R_\odot, or one-third that of Jupiter. This contradicts the predictions made by current stellar models that electron degeneracy leads to nearly constant radii for stars and brown dwarfs at masses below 0.1 M_\odot. We suggest that an equally valid interpretation of the data is that D04 is a VB8 analogue at a distance of 150\approx 150 parsecs.Comment: to appear in MNRAS, pink pages; 6 pages with 1 jpg, 1 postscript figur

    Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b

    Full text link
    We calculate the planet-star flux-density ratios as a function of wavelength from 0.5 microns to 25 microns for the transiting extrasolar giant planets TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three data points and generic calibration issues, detailed conclusions are difficult, but inferences regarding atmospheric composition, temperature, and global circulation can be made. Our models reproduce the observations reasonably well, but not perfectly, and we speculate on the theoretical consequences of variations around our baseline models. One preliminary conclusion is that we may be seeing in the data indications that the day side of a close-in extrasolar giant planet is brighter in the mid-infrared than its night side, unlike Jupiter and Saturn. This correspondence will be further tested when the data anticipated in other Spitzer bands are acquired, and we make predictions for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical Journa

    Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data

    Full text link
    We present theoretical atmosphere, spectral, and light-curve models for extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it Spitzer} planet/star contrast ratios or light curves have been published (circa June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD 179949b, and υ\upsilon And b. By comparing models with data, we find that a number of EGP atmospheres experience thermal inversions and have stratospheres. This is particularly true for HD 209458b, HD 149026b, and υ\upsilon And b. This finding translates into qualitative changes in the planet/star contrast ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover, the presence of atmospheric water in abundance is fully consistent with all the {\it Spitzer} data for the measured planets. For planets with stratospheres, water absorption features invert into emission features and mid-infrared fluxes can be enhanced by a factor of two. In addition, the character of near-infrared planetary spectra can be radically altered. We derive a correlation between the importance of such stratospheres and the stellar flux on the planet, suggesting that close-in EGPs bifurcate into two groups: those with and without stratospheres. From the finding that TrES-1 shows no signs of a stratosphere, while HD 209458b does, we estimate the magnitude of this stellar flux breakpoint. We find that the heat redistribution parameter, Pn_n, for the family of close-in EGPs assumes values from \sim0.1 to \sim0.4. This paper provides a broad theoretical context for the future direct characterization of EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8 figures, many with multiple panel

    Possible Solutions to the Radius Anomalies of Transiting Giant Planets

    Full text link
    We calculate the theoretical evolution of the radii of all fourteen of the known transiting extrasolar giant planets (EGPs) for a variety of assumptions concerning atmospheric opacity, dense inner core masses, and possible internal power sources. We incorporate the effects of stellar irradiation and customize such effects for each EGP and star. Looking collectively at the family as a whole, we find that there are in fact two radius anomalies to be explained. Not only are the radii of a subset of the known transiting EGPs larger than expected from previous theory, but many of the other objects are smaller than the default theory would allow. We suggest that the larger EGPs can be explained by invoking enhanced atmospheric opacities that naturally retain internal heat. This explanation might obviate the necessity for an extra internal power source. We explain the smaller radii by the presence in perhaps all the known transiting EGPs of dense cores, such as have been inferred for Saturn and Jupiter. Importantly, we derive a rough correlation between the masses of our "best-fit" cores and the stellar metallicity that seems to buttress the core-accretion model of their formation. Though many caveats and uncertainties remain, the resulting comprehensive theory that incorporates enhanced-opacity atmospheres and dense cores is in reasonable accord with all the current structural data for the known transiting giant planets.Comment: 22 pages in emulateapj format, including 10 figures (mostly in color), accepted to the Astrophysical Journal (February 9, 2007); to appear in volume 661, June 200

    Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands

    Get PDF
    We find that a theoretical fit to all the HD 209458b data at secondary eclipse requires that the dayside atmosphere of HD 209458b have a thermal inversion and a stratosphere. This inversion is caused by the capture of optical stellar flux by an absorber of uncertain origin that resides at altitude. One consequence of stratospheric heating and temperature inversion is the flipping of water absorption features into emission features from the near- to the mid-infrared and we see evidence of such a water emission feature in the recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere optical absorber may help explain both the weaker-than-expected Na D feature seen in transit and the fact that the transit radius at 24 μ\mum is smaller than the corresponding radius in the optical. Moreover, it may be a factor in why HD 209458b's optical transit radius is as large as it is. We speculate on the nature of this absorber and the planets whose atmospheres may, or may not, be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six pages in emulateapj forma

    Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets

    Get PDF
    We have created a general methodology for calculating the wavelength-dependent light curves of close-in extrasolar giant planets (EGPs) as they traverse their orbits. Focussing on the transiting EGPs HD189733b, TrES-1, and HD209458b, we calculate planet/star flux ratios during secondary eclipse and compare them with the Spitzer data points obtained so far in the mid-infrared. We introduce a simple parametrization for the redistribution of heat to the planet's nightside, derive constraints on this parameter (P_n), and provide a general set of predictions for planet/star contrast ratios as a function of wavelength, model, and phase. Moreover, we calculate average dayside and nightside atmospheric temperature/pressure profiles for each transiting planet/P_n pair with which existing and anticipated Spitzer data can be used to probe the atmospheric thermal structure of severely irradiated EGPs. We find that the baseline models do a good job of fitting the current secondary eclipse dataset, but that the Spitzer error bars are not yet small enough to discriminate cleanly between all the various possibilities.Comment: 14 figures, 7 text pages (in two-column emulateapj format); Accepted to the Ap.J. June 26, 2006; one cosmetic change made to astro-ph version

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of \sim1.3 μ\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa
    corecore