research

Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets

Abstract

We have created a general methodology for calculating the wavelength-dependent light curves of close-in extrasolar giant planets (EGPs) as they traverse their orbits. Focussing on the transiting EGPs HD189733b, TrES-1, and HD209458b, we calculate planet/star flux ratios during secondary eclipse and compare them with the Spitzer data points obtained so far in the mid-infrared. We introduce a simple parametrization for the redistribution of heat to the planet's nightside, derive constraints on this parameter (P_n), and provide a general set of predictions for planet/star contrast ratios as a function of wavelength, model, and phase. Moreover, we calculate average dayside and nightside atmospheric temperature/pressure profiles for each transiting planet/P_n pair with which existing and anticipated Spitzer data can be used to probe the atmospheric thermal structure of severely irradiated EGPs. We find that the baseline models do a good job of fitting the current secondary eclipse dataset, but that the Spitzer error bars are not yet small enough to discriminate cleanly between all the various possibilities.Comment: 14 figures, 7 text pages (in two-column emulateapj format); Accepted to the Ap.J. June 26, 2006; one cosmetic change made to astro-ph version

    Similar works

    Available Versions

    Last time updated on 03/01/2020