research

Possible Solutions to the Radius Anomalies of Transiting Giant Planets

Abstract

We calculate the theoretical evolution of the radii of all fourteen of the known transiting extrasolar giant planets (EGPs) for a variety of assumptions concerning atmospheric opacity, dense inner core masses, and possible internal power sources. We incorporate the effects of stellar irradiation and customize such effects for each EGP and star. Looking collectively at the family as a whole, we find that there are in fact two radius anomalies to be explained. Not only are the radii of a subset of the known transiting EGPs larger than expected from previous theory, but many of the other objects are smaller than the default theory would allow. We suggest that the larger EGPs can be explained by invoking enhanced atmospheric opacities that naturally retain internal heat. This explanation might obviate the necessity for an extra internal power source. We explain the smaller radii by the presence in perhaps all the known transiting EGPs of dense cores, such as have been inferred for Saturn and Jupiter. Importantly, we derive a rough correlation between the masses of our "best-fit" cores and the stellar metallicity that seems to buttress the core-accretion model of their formation. Though many caveats and uncertainties remain, the resulting comprehensive theory that incorporates enhanced-opacity atmospheres and dense cores is in reasonable accord with all the current structural data for the known transiting giant planets.Comment: 22 pages in emulateapj format, including 10 figures (mostly in color), accepted to the Astrophysical Journal (February 9, 2007); to appear in volume 661, June 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019