36 research outputs found

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure

    Superfluidity and collective oscillations of trapped Bose-Einstein condensates in a periodical potential

    Full text link
    Based on a unified theoretical treatment of the 1D Bogoliubov-de Genes equations, the superfluidity phenomenon of the Bose-Einstein condensates (BEC) loaded into trapped optical lattice is studied. Within the perturbation regime, an all-analytical framework is presented enabling a straightforward phenomenological mapping of the collective excitation and oscillation character of a trapped BEC where the available experimental configurations also fit.Comment: 5 pages and 2 Figs, some errors have been corrected in versions

    A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control

    Get PDF
    Reports of honey bee population decline has spurred many national efforts to understand the extent of the problem and to identify causative or associated factors. However, our collective understanding of the factors has been hampered by a lack of joined up trans-national effort. Moreover, the impacts of beekeeper knowledge and beekeeping management practices have often been overlooked, despite honey bees being a managed pollinator. Here, we established a standardised active monitoring network for 5 798 apiaries over two consecutive years to quantify honey bee colony mortality across 17 European countries. Our data demonstrate that overwinter losses ranged between 2% and 32%, and that high summer losses were likely to follow high winter losses. Multivariate Poisson regression models revealed that hobbyist beekeepers with small apiaries and little experience in beekeeping had double the winter mortality rate when compared to professional beekeepers. Furthermore, honey bees kept by professional beekeepers never showed signs of disease, unlike apiaries from hobbyist beekeepers that had symptoms of bacterial infection and heavy Varroa infestation. Our data highlight beekeeper background and apicultural practices as major drivers of honey bee colony losses. The benefits of conducting trans-national monitoring schemes and improving beekeeper training are discussed

    Real-time reconstruction of the strong-field driven dipole response

    No full text
    Using ultrashort and phase-locked laser pulses, combined with an in situ measurement of a reference pulse, we present a method capable of retrieving the nonlinearly perturbed time-dependent response function of a quantum system driven by strong electric fields directly from spectroscopic absorption data with high precision
    corecore