30 research outputs found

    Co-solving groundwater depletion and seasonal flooding through an innovative managed aquifer recharge approach: converting pilot to a regional solution in the Ram Ganga Sub-basin

    No full text
    Climate induced extreme events such as floods and droughts are often disastrous in incidences and affects Indian economy often. Low per capita surface water storage (225 m3/capita1), few sites for additional storages facilities and depleting groundwater aquifers reduce the resilience of the communities to alleviate the day-to-day short age and larger seasonal shocks. India has a long history of storing and recharging runoff waters through community participation. Ongoing such programs are focused on drought-prone or socio-economically weak areas and exclude the flood prone zones. The present study aims to improve the groundwater resources availability through diverting flows from rivers or canals at times when these flows pose flood risk and recharging the groundwater through suitable artificial recharge structures. This method addresses the issue of groundwater depletion as well as reducing the flood risks. A geo-hydrological analysis in spatial platform using data available in public domain and detailed ground survey, a site was identified in Jiwai Jadid village of Milk Block of Rampur district of Uttar Pradesh, India. A community owned pond was retrofitted with recharge wells and associated infrastructure to draw excess monsoon water from a nearby flood-prone river. The preliminary results show a positive impact on groundwater table and water quality. However, to achieve the full benefit of the method it is required to implement it in larger scale. Ongoing government programs that are focused on livelihood improvement and natural resources management are the best options to scale up such effect in regional scale

    Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: the case of Grombalia (Tunisia)

    No full text
    The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3 > 50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity
    corecore