5,209 research outputs found
Identification of photons in double beta-decay experiments using segmented germanium detectors - studies with a GERDA Phase II prototype detector
The sensitivity of experiments searching for neutrinoless double beta-decay
of germanium was so far limited by the background induced by external
gamma-radiation. Segmented germanium detectors can be used to identify photons
and thus reduce this background component.
The GERmanium Detector Array, GERDA, will use highly segmented germanium
detectors in its second phase. The identification of photonic events is
investigated using a prototype detector. The results are compared with Monte
Carlo data.Comment: 20 pages, 7 figures, to be submitted to NIM-
Pulse shape simulation for segmented true-coaxial HPGe detectors
A new package to simulate the formation of electrical pulses in segmented
true-coaxial high purity germanium detectors is presented. The computation of
the electric field and weighting potentials inside the detector as well as of
the trajectories of the charge carriers is described. In addition, the
treatment of bandwidth limitations and noise are discussed. Comparison of
simulated to measured pulses, obtained from an 18-fold segmented detector
operated inside a cryogenic test facility, are presented.Comment: 20 pages, 16 figure
The GALATEA Test-Facility for High Purity Germanium Detectors
GALATEA is a test facility designed to investigate bulk and surface effects
in high purity germanium detectors. A vacuum tank houses an infrared screened
volume with a cooled detector inside. A system of three stages allows an almost
complete scan of the detector. The main feature of GALATEA is that there is no
material between source and detector. This allows the usage of alpha and beta
sources as well as of a laser beam to study surface effects. A 19-fold
segmented true-coaxial germanium detector was used for commissioning
Measurement of the temperature dependence of pulse lengths in an n-type germanium detector
The temperature dependence of the pulse length was measured for an 18-fold
segmented n-type germanium detector in the temperature range of 77-120 K. The
interactions of 122 keV photons originating from a Europium-152 source were
selected and pulses as observed on the core and segment electrodes were
studied. In both cases, the temperature dependence can be well described by a
Boltzmann-like ansatz.Comment: 17 pages, 2 tables, 13 figures, published in EPJ A
Vacuum defects without a vacuum
Topological defects can arise in symmetry breaking models where the scalar
field potential has no minima and is a monotonically decreasing
function of . The properties of such vacuumless defects are quite
different from those of the ``usual'' strings and monopoles. In some models
such defects can serve as seeds for structure formation, or produce an
appreciable density of mini-black holes.Comment: 11 pages, REVTeX, 1 Postscript figure. Minor changes. Final version,
to appear in Phys. Rev.
Characterisation of an n-type segmented BEGe detector
A four-fold segmented n-type point-contact "Broad Energy" high-purity
germanium detector, SegBEGe, has been characterised at the Max-Planck-Institut
f\"ur Physik in Munich. The main characteristics of the detector are described
and first measurements concerning the detector properties are presented. The
possibility to use mirror pulses to determine source positions is discussed as
well as charge losses observed close to the core contact
Equation of state description of the dark energy transition between quintessence and phantom regimes
The dark energy crossing of the cosmological constant boundary (the
transition between the quintessence and phantom regimes) is described in terms
of the implicitly defined dark energy equation of state. The generalizations of
the models explicitly constructed to exhibit the crossing provide the insight
into the cancellation mechanism which makes the transition possible.Comment: 3 pages, talk given at TAUP200
Large Extra Dimensions, Sterile neutrinos and Solar Neutrino Data
Solar, atmospheric and LSND neutrino oscillation results require a light
sterile neutrino, , which can exist in the bulk of extra dimensions.
Solar , confined to the brane, can oscillate in the vacuum to the zero
mode of and via successive MSW transitions to Kaluza-Klein states of
. This new way to fit solar data is provided by both low and
intermediate string scale models. From average rates seen in the three types of
solar experiments, the Super-Kamiokande spectrum is predicted with 73%
probability, but dips characteristic of the 0.06 mm extra dimension should be
seen in the SNO spectrum.Comment: 4 pages, 2 figure
Characterization of the first true coaxial 18-fold segmented n-type prototype detector for the GERDA project
The first true coaxial 18-fold segmented n-type HPGe prototype detector
produced by Canberra-France for the GERDA neutrinoless double beta-decay
project was tested both at Canberra-France and at the Max-Planck-Institut fuer
Physik in Munich. The main characteristics of the detector are given and
measurements concerning detector properties are described. A novel method to
establish contacts between the crystal and a Kapton cable is presented.Comment: 21 pages, 16 Figures, to be submitted to NIM
Rip/singularity free cosmology models with bulk viscosity
In this paper we present two concrete models of non-perfect fluid with bulk
viscosity to interpret the observed cosmic accelerating expansion phenomena,
avoiding the introduction of exotic dark energy. The first model we inspect has
a viscosity of the form by
taking into account of the decelerating parameter q, and the other model is of
the form . We give out the
exact solutions of such models and further constrain them with the latest
Union2 data as well as the currently observed Hubble-parameter dataset (OHD),
then we discuss the fate of universe evolution in these models, which confronts
neither future singularity nor little/pseudo rip. From the resulting curves by
best fittings we find a much more flexible evolution processing due to the
presence of viscosity while being consistent with the observational data in the
region of data fitting. With the bulk viscosity considered, a more realistic
universe scenario is characterized comparable with the {\Lambda}CDM model but
without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-
- âŠ