46 research outputs found

    DHT-based functionalities using hypercubes

    Get PDF
    Decoupling the permanent identifi er of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. Existing solutions use a logical tree-like structure that, although allowing for simple address assignment and management, lead to low route selection flexibility. This clearly results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of candidate paths by using incomplete hypercubes. We will see that this solution can cover a wide range of applications by adapting to the dynamics of the network1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Reduction of Dilute Ising Spin Glasses

    Full text link
    The recently proposed reduction method for diluted spin glasses is investigated in depth. In particular, the Edwards-Anderson model with \pm J and Gaussian bond disorder on hyper-cubic lattices in d=2, 3, and 4 is studied for a range of bond dilutions. The results demonstrate the effectiveness of using bond dilution to elucidate low-temperature properties of Ising spin glasses, and provide a starting point to enhance the methods used in reduction. Based on that, a greedy heuristic call ``Dominant Bond Reduction'' is introduced and explored.Comment: 10 pages, revtex, final version, find related material at http://www.physics.emory.edu/faculty/boettcher

    Heterogeneous-k-core versus Bootstrap Percolation on Complex Networks

    Full text link
    We introduce the heterogeneous-kk-core, which generalizes the kk-core, and contrast it with bootstrap percolation. Vertices have a threshold kik_i which may be different at each vertex. If a vertex has less than kik_i neighbors it is pruned from the network. The heterogeneous-kk-core is the sub-graph remaining after no further vertices can be pruned. If the thresholds kik_i are 11 with probability ff or k3k \geq 3 with probability (1f)(1-f), the process forms one branch of an activation-pruning process which demonstrates hysteresis. The other branch is formed by ordinary bootstrap percolation. We show that there are two types of transitions in this heterogeneous-kk-core process: the giant heterogeneous-kk-core may appear with a continuous transition and there may be a second, discontinuous, hybrid transition. We compare critical phenomena, critical clusters and avalanches at the heterogeneous-kk-core and bootstrap percolation transitions. We also show that network structure has a crucial effect on these processes, with the giant heterogeneous-kk-core appearing immediately at a finite value for any f>0f > 0 when the degree distribution tends to a power law P(q)qγP(q) \sim q^{-\gamma} with γ<3\gamma < 3.Comment: 10 pages, 4 figure

    Social Events in a Time-Varying Mobile Phone Graph

    Get PDF
    The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    The entropy of randomized network ensembles

    Full text link
    Randomized network ensembles are the null models of real networks and are extensivelly used to compare a real system to a null hypothesis. In this paper we study network ensembles with the same degree distribution, the same degree-correlations or the same community structure of any given real network. We characterize these randomized network ensembles by their entropy, i.e. the normalized logarithm of the total number of networks which are part of these ensembles. We estimate the entropy of randomized ensembles starting from a large set of real directed and undirected networks. We propose entropy as an indicator to assess the role of each structural feature in a given real network.We observe that the ensembles with fixed scale-free degree distribution have smaller entropy than the ensembles with homogeneous degree distribution indicating a higher level of order in scale-free networks.Comment: (6 pages,1 figure,2 tables

    Social Events in a Time-Varying Mobile Phone Graph

    Get PDF
    The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Understanding edge-connectivity in the Internet through core-decomposition

    Get PDF
    Internet is a complex network composed by several networks: the Autonomous Systems, each one designed to transport information efficiently. Routing protocols aim to find paths between nodes whenever it is possible (i.e., the network is not partitioned), or to find paths verifying specific constraints (e.g., a certain QoS is required). As connectivity is a measure related to both of them (partitions and selected paths) this work provides a formal lower bound to it based on core-decomposition, under certain conditions, and low complexity algorithms to find it. We apply them to analyze maps obtained from the prominent Internet mapping projects, using the LaNet-vi open-source software for its visualization

    Rhythmogenic neuronal networks, pacemakers, and k-cores

    Full text link
    Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.Comment: 4+ pages, 4 figures, submitted to Phys. Rev. Let

    Scale-free models for the structure of business firm networks

    Get PDF
    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k-shell decomposition, with top-ranking firms in terms of market value in higher k-shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k-shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3. We compare the k-shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k-shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks
    corecore