433 research outputs found

    Angle-resolved reflectance and surface plasmonics of the MAX phases

    Full text link
    We investigate theoretically the optical response of bulk samples and thin films of the MAX phases materials, accounting for their large electrical anisotropy. We reveal the unusual behaviour of the reflection and transmittion spectra as a function of the incidence angle and predict the effect of the inverse total internal reflection. We also investigate the behaviour of the surface plasmon modes in bulk samples and thin films and analyse the difference between MAX materials and conventional metals.Comment: 3 pages, published in Optics Letter

    Bistability phenomena in one-dimensional polariton wires

    Get PDF
    We investigate the phenomena of bistability and domain wall propagation in polaritonic systems with dissipation provided by the interaction with incoherent phonon bath. The results on the temperature dependence of the polariton bistability behavior and polariton neuron switching are presented.Comment: 6 pages + 4 figures. Continuation of the work published in Phys. Rev. B 83, 165316 (2011

    Exciton-exciton interaction in transition-metal dichalcogenide monolayers

    Get PDF
    We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction, specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.Comment: 10 pages, 6 figure

    Functional renormalization group approach to the singlet-triplet transition in quantum dots

    Full text link
    We present a functional renormalization group approach to the zero bias transport properties of a quantum dot with two different orbitals and in presence of Hund's coupling. Tuning the energy separation of the orbital states, the quantum dot can be driven through a singlet-triplet transition. Our approach, based on the approach by Karrasch {\em et al} which we apply to spin-dependent interactions, recovers the key characteristics of the quantum dot transport properties with very little numerical effort. We present results on the conductance in the vicinity of the transition and compare our results both with previous numerical renormalization group results and with predictions of the perturbative renormalization group.Comment: 15 pages, 9 figure

    Light Mediated Superconducting Transistor

    Full text link
    Bose-condensation of mass-less quasiparticles (photons) can be easily achieved at the room temperature in lasers. On the other hand, condensation of bosons having a non-zero mass requires usually ultra-low temperatures. Recently, it has been shown that polaritons, which are half-light-half-matter quasi-particles, may form condensed states at high temperatures (up to 300K). Polaritons composed by electron-hole pairs coupled to confined light modes in optical cavities may form a Bardeen-Cooper-Schriefer (BCS) superfluid. We propose a new transistor based on stimulated scattering of electron-hole pairs into the BCS polariton mode. A pn-junction embedded inside an optical cavity resonantly emits light into the cavity mode. If the cavity mode energy slightly exceeds the band-gap energy, it couples with electron-hole pairs with zero centre of mass wave-vector but non-zero wave-vector of relative motion. This creates a super-current in the plane of the structure. In an isotropic case, its direction is chosen by the system spontaneously. Otherwise, it is pinned to the external in-plane bias. We calculate the phase diagram for the electron-hole-polariton system.Comment: 11 pages, 3 figure

    Structure of surface electronic states in strained mercury telluride

    Get PDF
    We present the theory describing the various surface electronic states arisen from the mixing of conduction and valence bands in a strained mercury telluride (HgTe) bulk material. We demonstrate that the strain-induced band gap in the Brillouin zone center of HgTe results in the surface states of two different kinds. Surface states of the first kind exist in the small region of electron wave vectors near the center of the Brillouin zone and have the Dirac linear electron dispersion characteristic for topological states. The surface states of the second kind exist only far from the center of the Brillouin zone and have the parabolic dispersion for large wave vectors. The structure of these surface electronic states is studied both analytically and numerically in the broad range of their parameters, aiming to develop its systematic understanding for the relevant model Hamiltonian. The results bring attention to the rich surface physics relevant for topological systems.Comment: Published version. arXiv admin note: text overlap with arXiv:1903.0457

    Aharonov-Bohm effect for excitons in a semiconductor quantum ring dressed by circularly polarized light

    Full text link
    We show theoretically that the strong coupling of circularly polarized photons to an exciton in ring-like semiconductor nanostructures results in physical nonequivalence of clockwise and counterclockwise exciton rotations in the ring. As a consequence, the stationary energy splitting of exciton states corresponding to these mutually opposite rotations appears. This excitonic Aharonov-Bohm effect depends on the intensity and frequency of the circularly polarized field and can be detected in state-of-the-art optical experiments.Comment: Published versio

    Intersubband polaritons with spin-orbit interaction

    Full text link
    We investigate intersubband polaritons formed in the asymmetric quantum well (AQW) embedded into the semiconductor microcavity and study the effects of spin-orbit interaction (SOI) acting on intersubband excitations. The spin-orbit interaction of Rashba and Dresselhaus type remove the spin degeneracy of electrons with finite value of in-plane momentum and allow four types of intersubband excitations. While optical spin-flip transitions are suppressed, the spectrum of elementary excitations shows the appearance of upper, lower and middle polaritonic branches based on spin-conserving transitions. The accounting of finite photon momentum leads to non-zero average spin projection of electronic ensemble in the first excited subband under cw excitation for both isotropic (Rashba) and anisotropic (Rashba and Dresselhaus) SOI. We predict the possibility of spin current generation in the considered systems with long coherence length.Comment: 9 pages, 8 figure
    corecore