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Bistability phenomena in one-dimensional polariton wires
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We investigate the phenomena of bistability and domain-wall propagation in polaritonic systems with
dissipation provided by interaction with an incoherent phonon bath. The results on temperature dependence
of polariton bistability behavior and polariton neuron switching are presented.
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I. INTRODUCTION

The study of light-matter interactions is interesting and
important from the point of view of both fundamental physics
and device applications. In this context, the structure that
attracted particular attention is a semiconductor microcavity
with a quantum well (QW) embedded into it. Tuning the energy
of the excitonic transition in resonance with the energy of the
photonic cavity mode, one can reach a regime of strong cou-
pling accompanied by the formation of hybrid quasiparticles
called exciton polaritons. These half-light, half-matter parti-
cles exhibit a number of extraordinary properties. Due to their
extremely small effective mass and bosonic nature, polaritons
provide an opportunity to study various quantum collective
phenomena, ranging from polariton BEC (Ref. 1) and Joseph-
son effect2 to polariton-mediated superconductivity.3 Strong
polariton-polariton interactions make it possible to observe
several remarkable nonlinear effects such as superfluidity,4 bi-
and multistability,5 and solitonlike propagation.6

Although free polaritons are two-dimensional (2D) par-
ticles, it was recently noted7 that it can be interesting to
consider one-dimensional (1D) polariton wires (see setup in
Fig. 1) provided by lateral confinement of the polaritons in one
of the directions.8 Such wires have the potential to become
basic building blocks in future spinoptronic devices, including
polariton Berry-phase interferometers9 and polariton Datta
and Das spin transistors.10 In the nonlinear regime, bistability
effects in 1D polariton channels allow for the realization of
logical circuits based on polariton neurons,11 in which a local
switching between states propagates throughout the wire.

The above-mentioned phenomena require a proper theoret-
ical basis for a description of all relevant processes, which is a
nontrivial task. A successful theoretical consideration should
include the effects of interaction with a reservoir of acoustic
phonons which leads to polariton thermalization, and the
effects of polariton-polariton scattering leading to blueshifts
and nonlinearities. Additionally, it should be taken into account
that polaritons have a finite lifetime, and the correct description
of their dynamics should necessarily include the effects of
pump and decay.

Currently, two main approaches have been pursued to
describe the dynamics of interacting polaritons. First, with
the assumption of full coherence, mean-field approximation
gives the Gross-Pitaevskii equation (GPE) commonly used
for the description of spatially inhomogeneous polariton
condensates.12,13 However, while GPE includes polariton-
polariton scattering, it does not describe interaction with a

phonon reservoir. Assuming oppositely that the polaritons
are completely incoherent, the dynamics in reciprocal space
can be described by semiclassical Boltzmann equations.14–17

Unfortunately, this technique fails to describe the real-space
dynamics of inhomogeneous systems.

Recently we proposed a formalism based on the full
density-matrix approach to describe the dynamics of the
interacting polariton system with dissipation in real space and
time.18 This method was applied to study the propagation of 1D
polariton droplets. However, we neglected the pumping terms,
and thus consideration of the cw regime most relevant from the
experimental point of view was not taken. This paper is devoted
to bridging this evident gap. We investigate the phenomena of
bistability and domain-wall propagation in polaritonic systems
with dissipation provided by interaction with an incoherent
phonon bath and present the results on temperature dependence
of the hysteresis in the polariton system and polariton neuron
switching.

II. FORMALISM

The general formalism for the time evolution of a spatially
inhomogeneous bosonic system without account of the
coherent pumping terms was developed in our previous
paper.18 We refer to this paper for details and derivations and
give here only a brief overview, adding detailed consideration
of the pumping terms.

The state of the whole system is described by the combined
polariton and phonon density matrix ρ = ρph ⊗ ρpol (fac-
torization corresponds to Born approximation). The phonon
part of the system is assumed to be time independent and
thermalized, ρph = exp{−βĤph}, while we need to determine
the time dependence of the single-particle polariton density
matrix in real space. It can be conveniently represented using
the polariton field operators ψ̂†(r,t),ψ̂(r,t):

ρ(r,r′,t) = Tr{ψ̂†(r,t)ψ̂(r′,t)ρ} ≡ 〈ψ̂†(r,t)ψ̂(r′,t)〉, (1)

where the trace is performed by all the degrees of freedom of
the system. A Fourier transform can be performed to work in
reciprocal space, which makes the calculations easier.

ρ(k,k′,t) = (2π )d/Ld

∫
ei(kr−k′r′)ρ(r,r′,t)dr dr′, (2)

where d is the dimensionality of the system (d = 2 for
nonconfined polaritons, d = 1 for the polariton channel), L

is its linear size, and a
†
k,ak are the creation and annihilation
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FIG. 1. (Color online) Schematic representation of polariton
wave-packet propagation along a 1D polariton wire.

operators of the polaritons with momentum k. If the time
dependence of the density matrix in reciprocal space is
determined, an inverse Fourier transform allows one to obtain
the dynamics in real space straightforwardly.

The Hamiltonian of the system can be represented as a
sum of the terms corresponding to various physically relevant
processes in the system:

Ĥ = Ĥ0 + Ĥpol + Ĥph + Ĥcp + Ĥicp, (3)

where

Ĥ0 =
∑

k

Eka
†
kak (4)

corresponds to free polariton propagation,

Ĥpol = U

2

∑
k1,k2,p

a
†
k1

a
†
k2

ak1+pak2−p (5)

corresponds to polariton-polariton scattering,

Ĥph =
∑
k,q

D(q)a†
k+qak(bq + b

†
−q) (6)

corresponds to the polariton-phonon scattering, Ĥcp corre-
sponds to coherent laser pumping, and Ĥicp corresponds
to incoherent pumping and finite polariton lifetime (see
expressions for these two terms below).

In the above formulas Ek defines the dispersion of the
free polaritons and the quantities U and D correspond to
the polariton-polariton and polariton-phonon scattering. Their
calculation is presented in Refs. 19–21.

The Hamiltonian (3) can be separated into the sum of the
coherent part and the part introducing decoherence,

H = Hco + Hdeco,

Hco = Ĥ0 + Ĥpol + Ĥcp, (7)

Hdeco = Ĥph + Ĥicp.

The effects of the coherent and incoherent parts should be
treated in different ways. As for the coherent processes in the
system, they can be accounted for using the Liouville–von
Neumann equation

ih̄ (∂tρ)(co) = [ρ; Ĥco]. (8)

On the contrary, the incoherent part of the evolution is
described by the Lindblad equation,22 which reads

(∂tρ)(deco) = −
∫ t

−∞
dt ′[Hdeco(t); [Hdeco(t ′); ρ(t)]]

= δ�E[2(H+ρH− + H−ρH+)

− (H+H− + H−H+)ρ

− ρ(H+H− + H−H+)], (9)

where the coefficient δ�E denotes energy conservation and
has dimensionality of inverse energy, and in the calculation is
taken to be equal to the broadening of the polariton state.23

The terms H+ and H− correspond to the processes when the
thermal reservoir particle [phonon or other reservoir boson
(see below)] is created or destroyed.

The effects of the terms corresponding to the polariton-
phonon and polariton-polariton interactions were considered
in detail in Ref. 18. For polariton-polariton scattering, these
equations reproduce an analog of the Gross-Pitaevskii equation
written for the density matrix, and for polariton-phonon
interactions they are generalizations of the semiclassical
Boltzmann equations. The corresponding equations for the
elements of the density matrix and their derivation can be found
there, and we reproduce them below after the introduction of
a pump into the system (see below).

A. Coherent pumping

We start from the case of a coherent pump. Its physical
meaning is coupling to an electric field with a well-defined
phase, provided, e.g., by an external laser beam. Mathemati-
cally, the corresponding Hamiltonian can be introduced as

Ĥcp =
∑

k′
pk′a

†
k′ + H.c. (10)

The coefficients pk are Fourier transforms of the pumping
amplitudes in a real space p(x,t), which in the case of a cw
pump can be cast as

p(x,t) = P (x)eikpxe−iωpt , (11)

where P (x) is the pumping spot profile in real space, kp is an
in-plane pumping vector resulting from the inclination of the
laser beam with respect to the vertical, and ωp is the pumping
frequency of the single-mode laser.

Let us now check the effect of Ĥcp on the evolution of
the polariton density matrix. Insertion of the Hamiltonian (10)
into the Liouville–von Neumann equation yields the following
result:

∂t 〈a†
kak〉 = −2

h̄
Im{p∗

k〈ak〉},
(12)

∂t 〈a†
kak′ 〉 = i

h̄

(
p∗

k′ 〈ak〉 − pk〈a′
k〉∗

)
.

One sees that the equations for matrix elements contain a
new quantity—an average value of the annihilation operator
of the polariton field, which is nothing but the order parameter
(also called a macroscopic wave function) of the system. One
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thus needs to obtain the expression for this quantity to close
the system of the equations. Straightforward derivation gives

∂t 〈ak〉
= − i

h̄
pk − i

h̄
Ek〈ak〉 − i

h̄
U

∑
k2,p

ρ(k2,k2 − p)〈ak+p〉

+
⎛
⎝ ∑

q,Ek<Ek+q

W (q)
[
ρ(k + q,k + q) − nph

q

]

+
∑

q,Ek>Ek+q

W (q)
[−ρ(k + q,k + q)−nph

q −1
]⎞⎠ 〈ak〉,

(13)

where n
ph
q is the number of phonons with momentum q, given

by the Boltzmann distribution, and W (q) are the transition rates
of phonon-assisted processes connected with matrix elements
of the polariton-phonon interaction, W (q) = 2πD2(q)δ�E/h̄.

B. Incoherent pumping and lifetime

By incoherent pump we mean the exchange of particles
between the polariton system and some incoherent bosonic
reservoir whose nature depends on the pumping scheme.
Usually, this will be an ensemble of incoherent excitons created
by either an electrical pump or an incoherent optical excitation,
or by a reservoir of external photonic modes providing leakage
of the photons from the cavity. The corresponding Hamiltonian
written in Dirac representation reads

Hicp =
∑
k,k′

K(k,k′)ei(Ek−ER,k′ )t/h̄a
†
kbk′ + H.c.

= H+
icp + H−

icp, (14)

where bk is a secondary quantization operator corresponding
to the bosonic reservoir in question, and K(k,k′) are constants
characterizing the coupling between the polariton system and
the reservoir. The introduction of this Hamiltonian into the
Lindblad equation leads to the standard terms whose derivation
can be found elsewhere:22,24

∂t 〈a†
kak′ 〉 = Ikδkk′ − 1

2h̄
(γk + γk′)〈a†

kak′ 〉, (15)

where the terms Ik and γk denote the intensity of the incoherent
pump and broadening of the polaritonic levels connected
with the lifetimes of the polariton states, γk = h̄τ−1

k . They
are usually taken as phenomenological parameters but can be
connected with the quantities entered in Hamiltonian (14):

Ik = 1

h̄

∑
k′

|K(k,k′)|2δ[E(k) − E′(k′)]nk′ , (16)

γk =
∑

k′
|K(k,k′)|2δ[E(k) − E′(k′)], (17)

where nk′ are the occupancies of the bosonic reservoir.
In our further consideration we will consider only the case

of the coherent pump, thus setting all Ik = 0 and retaining in
the resulting equations, only the terms corresponding to the
lifetime which corresponds to the case of an empty bosonic
reservoir, nk = 0 for all k.

C. Final equations

To get a full system of equations for the dynamics of the
polariton system with pump and decay one should combine
the equations derived in Ref. 18 with expressions (12), (13),
and (15). For the diagonal elements of the density matrix one
gets

{∂tρ(k,k)} = −2

h̄
Im{p∗

k〈ak〉} − ρ(k,k)

τk
+ 2

h̄
U

∑
k1,p

Im{ρ(k1,k1 − p)ρ(k,k + p)}

+
∑

q′,Ek<Ek+q′

2W (q′)
{
ρ(k + q′,k + q′)

(
n

ph
q′ + 1

)
[ρ(k,k) + 1] − ρ(k,k)nph

q′ [ρ(k + q′,k + q′) + 1]
}

+
∑

q′,Ek>Ek+q′

2W (q′)
{
ρ(k + q′,k + q′)nph

−q′[ρ(k,k) + 1] − ρ(k,k)
(
n

ph
−q′ + 1

)
[ρ(k + q′,k + q′) + 1]

}
, (18)

where the first line corresponds to the coherent pumping and finite lifetime, the second one describes the polariton-polariton
interaction, and the other lines refer to the polariton scattering with acoustic phonons.

For the off-diagonal part one has

{∂tρ(k,k′)} = i

h̄
(Ek − Ek′)ρ(k,k′) + i

h̄
(p∗

k〈ak〉 − pk〈ak〉∗) −
(

1

2τk
− 1

2τk′

)
ρ(k,k′)

+ i

h̄
U

∑
k,p

ρ(k,k − p)[ρ(k − p,k′) − ρ(k,k′ + p)] + ρ(k,k′)

⎧⎨
⎩

∑
q′,Ek<Ek+q′

W (q′)
[
ρ(k + q′,k + q′) − n

ph
q′

]
+

∑
q′,Ek>Ek + q′

W (q′)
[ − ρ(k + q′,k + q′) − n

ph
q′ − 1

] +
∑

q′,Ek′<Ek′+q′

W (q′)
[
ρ(k′ + q′,k′ + q′) − n

ph
q′

]

+
∑

q′,Ek′>Ek′+q′

W (q′)
[ − ρ(k′ + q′,k′ + q′) − n

ph
q′ − 1

]⎫⎬⎭ . (19)
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The resulting formalism is suitable for describing both
2D polaritons and polaritons confined in 1D channels.
Consideration of the former case, however, needs powerful
computing facilities, and in the present paper we focus only
on consideration of the latter one.

III. RESULTS AND DISCUSSION

We considered a 2-μm-wide and 50-μm-long polariton
channel in a microcavity with an active region based on
InAlGaAs alloys with Rabi splitting 15 meV. The matrix
elements of the polariton-polariton and polariton-phonon
interactions were estimated using the standard formulas19–21

and were taken as U = 21 μeV and W (q) = 10 neV, with
the phonon interaction constant being q independent and
estimated at a characteristic value of the exchange momentum.
The boundary conditions are inherently periodic from the
model, and the discretization length of the wire was a =
L/100. The maximum value in k space is thus kmax = π/a

and the step size is kstep = 2π/L.
The first phenomenon we modeled was the effect of ther-

malization in the polariton system provided by the polariton-
phonon interaction on its bistable behavior. It is well known
that if the polariton ensemble is fully coherent and its dynamics
is described by the Gross-Pitaevskii equation containing
coherent pumping and lifetime terms, and if the energy of
the pumping laser lies slightly above the bottom of the lower
polariton branch, the dependence of the concentration of the
polaritons on pump intensity is described by an S-shaped
curve, characteristic for systems revealing the effects of
bistability and hysteresis.25 Such a behavior is due to the
polariton-polariton interactions which introduce nonlinearity
into the system.

On the other hand, in the approach based on the semi-
classical Boltzmann equations corresponding to the limit of
strong decoherence, bistability is absent and dependence of
the occupancy of the ground state on the pump intensity is
described by a single defined threshold function.15 One can
expect that a transition between these two regimes should
occur if one raises the temperature in the system, which
leads to intensification of the polariton-phonon interactions
and decoherence in the system. This was indeed observed in
our calculations.

The computational results are presented in Fig. 2. The
system is pumped with a spatially homogeneous laser beam
oriented perpendicular to the QW (i.e., at k = 0 in k space)
at a slightly higher frequency than the k = 0 polariton
frequency (0.5 meV detuning). At low pump intensity, the
pump frequency is not in resonance with the condensate.
Consequently, the condensate occupation remains fairly low.
As the pumping is increased, the polariton energy is blueshifted
into resonance with the pump and there is a sudden jump in the
occupation of the k = 0 polariton state at some characteristic
pump intensity I0. If one then decreases the pump, the polariton
occupancy jumps down to a different value I1 < I0, which
corresponds to the hysteresis behavior. However, the increase
in temperature leads to intensification of the phonon scattering,
and bistable behavior becomes less and less pronounced: the
hysteresis area narrows and is quenched completely above
some critical temperature Tc ≈ 70 K. This corresponds to
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FIG. 2. (Color online) The dependence of the polariton concen-
tration on spatially homogeneous cw pumping intensity for various
temperatures. At 10 K (black), the hysteresis curve is quite wide. At
50 K (blue), the hysteresis curve is much narrower, while at 100 K
(red) it has disappeared completely. The unit of pumping is the rate
of incoming photons.

the transition between the Gross-Pitaevskii and Boltzmann
regimes in the polariton system. A similar phenomenon was
earlier predicted for a microcavity-based terahertz-emitting
device.26

The effect of bistability can form a basis for creation of a
variety of devices based on nonlinear polariton transport.27

Among them are polariton neurons,28 the building blocks
of polariton-based optical integrated circuits11 utilizing the
phenomenon of domain-wall propagation in bistable systems.
The underlying idea is the following. Imagine that the polariton
system is driven by a spatially homogeneous background cw
pump with intensity corresponding to the bistable regime, and
the steady-state occupancy of the system corresponds to the
lower branch of the S-shaped curve. Then a short localized
pulse is applied in the middle of the wire. Its intensity should
be enough to send the condensate locally to the upper branch of
the S-shaped curve. Due to diffusion, the polariton wave packet
spreads to the neighboring regions and switches them to the
upper branch. This way, the area of high occupancy steadily
expands. This phenomenon is analogous to the propagation of
the domain wall in ferromagnetic materials. It should be noted
that although the polaritons have a finite lifetime, this does not
limit the length of signal propagation in a polariton neuron,
and the signal keeps propagating as long as the background
cw pumping persists.

Temperature should have a strong effect on neuron behav-
ior. Indeed, bistability switching strongly depends on it, as
we have shown above. Moreover, the increase in temperature
affects the dynamics of the polaritons in real space, which have
a strong impact on the velocity of bistability switching, as we
show below. Figure 3 represents the results of our calculations.
At 0 K, the switching is clear and one can easily see the
propagation of a sharp, well-defined domain wall. At 6 and
12 K (using the same pump intensity as before) the switching is
still clearly visible, although the features are a bit smeared out.
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FIG. 3. (Color online) Neuron behavior and domain-wall propa-
gation for (top to bottom) T = 0, 6, and 12 K. The plots show the
polariton in units of μm−2. The system is near-resonantly pumped
by a spatially homogeneous cw laser; at t = 25 − 35 ps a switching
pulse arrives. At 0 K one sees the propagation of a distinct domain
wall. It is still well visible at 6 and 12 K, although the features are
a bit smeared out. In fact, the propagation speed of the domain wall
increases with temperature, since the polaritons diffuse faster. Bottom
plot: domain-wall propagation speed as a function of temperature.
Above some critical temperature there is no bistability and therefore
no population switching.

More importantly, the domain-wall propagation speed clearly
increases with temperature, as is shown in the bottom plot
of Fig. 3. This can be explained by the polaritons diffusing
faster in space at higher temperature and could have a positive
effect on functioning of the realistic polariton devices. Note,
however, that increasing the temperature makes the domain
wall less sharp, and at some critical temperature the switching
behavior abruptly disappears.

Finally, the effect of phonon scattering on pure dephasing
in the system was considered. We pumped the system with a
coherent pulse having a Gaussian profile in the real space.
For various temperatures of the system, we investigated
in the steady state the spatial profiles of both the total
polariton density and its coherent part determined as |ψ(x)|2,
where

ψ(x) =
∫ +∞

−∞
〈ak〉eikx dk.

The results are shown in Fig. 4 for temperatures 1, 10, and 50 K.
Solid lines denote the total population, dashed lines denote the
coherent fraction, and the dotted lines denote the incoherent
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FIG. 4. Coherent fraction at (top to bottom) T = 1, 10, and
50 K. Pumping at k = 0, no detuning. The solid lines show the total
population, the dashed lines the coherent population, and the dotted
ones the incoherent population.

fraction. One can see that at low temperatures the coherent
fraction is quite large at the center of the coherent pumping
spot, but it dramatically decays outside of it. However, as the
temperature is increased, the density profile gets more spread
out over the wire, forming an almost constant background
density made up of the decoherent population.

IV. CONCLUSION

In conclusion, we have considered the effects of coherent
pumping and finite lifetime in a polaritonic system accounting
for all physically relevant processes in the system. We
applied our theory for the consideration of nonlinear polariton
propagation in a 1D polariton wire. We have shown that the
increase of temperature dramatically affects such processes as
bistability switching and domain-wall propagation in polariton
neurons.
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