34 research outputs found

    Π‘Π΅Π»ΠΊΠΈ CRABP – родствСнники ΠΈΠ»ΠΈ ΠΎΠ΄Π½ΠΎΡ„Π°ΠΌΠΈΠ»ΡŒΡ†Ρ‹?

    Get PDF
    Retinoic acid being the most active metabolite of vitamin A (retinol) regulates the wide spectrum of physiological processes including embryonic development, development of immune response, hematopoiesis, glucose and lipids metabolism, etc. Retinoic acid participates in the regulation of such important aspects of life-sustaining activity as cell differentiation, proliferation and programmed cell death. This review is focused on comparison of two highly homological members of lipid-binding proteins family, CRABP1 and CRABP2. Although binding of retinoic acid is the only known function of these proteins the physiological meaning this interaction seems to be rather different. CRABBP2 binding of retinoic acid leads to the activation of RAR / RXR nuclear receptors, that act as transcription factors, and further stimulation of expression of numerous retinoic responsive genes. The meaning of CRABP1 binding of retinoic acid is less clear. Some data evidences for the similar action of CRABP1 and CRABP2 in regard to the potentiation of the retinoic acid effect, while the majority of data points on the opposite role of CRABP1, that is reduction of intracellular concentration of retinoic acid and / or decrease of retinoic acid bioavailability through the potentiation of its catabolism or sequestration in the cytosol. The most recent publications also suggest some additional functions of these proteins that could be independent of retinoic acid signalling. The data concerning the roles of these proteins in carcinogenesis and tumor progression are contradictive as well.This review covers the functions of retinoic acid as well as the molecular mechanisms mediating its activity including the different aspects of retinoic acid receptors activity. The review also comprises the comparative structural-functional analysis of CRABP proteins and probable mechanisms of their intracellular activity including those associated with retinoic acid signalling and retinoic acid-independent. A special attention is drawn to the analysis of the data on the involvement of CRABP proteins in the carcinogenesis and tumor progression. The data pointing on either oncogenic or tumor-suppressive functions are given for each protein.РСтиноСвая кислота (РК) – Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ Π²ΠΈΡ‚Π°ΠΌΠΈΠ½Π° А (Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ»Π°), Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр физиологичСских процСссов Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅, Π² Ρ‚ΠΎΠΌ числС ΡΠΌΠ±Ρ€ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°, гСмопоэз, ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ ΠΈ Π»ΠΈΠΏΠΈΠ΄ΠΎΠ² ΠΈ Π΄Ρ€. РК участвуСт Π² рСгуляции Π²Π°ΠΆΠ½Π΅ΠΉΡˆΠΈΡ… аспСктов ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ гибСль. ΠžΠ±Π·ΠΎΡ€ посвящСн ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ 2 высокогомологичных прСдставитСлСй сСмСйства Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠΏΠΈΠ΄ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² CRABP1 ΠΈ CRABP2, основная ΠΈ СдинствСнно установлСнная Π½Π° сСгодняшний дСнь функция ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… – Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ связываниС РК. Однако Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠ³ΠΎ связывания, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎ. БвязываниС Π‘RABP2 с РК ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ядСрных Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² (RAR / RXR), ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ транскрипционными Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ стимуляции экспрСссии Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠΈΠ΄-рСспонсивных Π³Π΅Π½ΠΎΠ². Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ связывания CRABP1 с РК ΠΌΠ΅Π½Π΅Π΅ понятно. Π•ΡΡ‚ΡŒ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° сходного дСйствия Π±Π΅Π»ΠΊΠΎΠ² CRABP1 ΠΈ CRABP2 Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ усилСния эффСкта РК, ΠΎΠ΄Π½Π°ΠΊΠΎ большая Ρ‡Π°ΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ CRABP1 – сниТСниС Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ / ΠΈΠ»ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ биодоступности РК Π·Π° счСт усилСния Π΅Π΅ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΈΠ»ΠΈ сСквСстрирования Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ послСдних исслСдований ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ Π±Π΅Π»ΠΊΠΎΠ² Π‘RABP ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π΅ связанныС с ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ сигнала ΠΎΡ‚ РК. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹ Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ Ρ€ΠΎΠ»ΠΈ этих Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ прогрСссии. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ РК ΠΈ молСкулярныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹, ΠΎΠΏΠΎΡΡ€Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ аспСкты функционирования Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² РК, приводится ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик Π±Π΅Π»ΠΊΠΎΠ² CRABP ΠΈ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ активности, ΠΊΠ°ΠΊ связанныС с РК, Ρ‚Π°ΠΊ ΠΈ нСзависимыС ΠΎΡ‚ Ρ€Π΅Ρ‚ΠΈΠ½ΠΎΠ΅Π²ΠΎΠ³ΠΎ сигналинга. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ Π°Π½Π°Π»ΠΈΠ·Ρƒ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ связи Π±Π΅Π»ΠΊΠΎΠ² CRABP с ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ ΠΈ ΠΈΡ… ΡƒΡ‡Π°ΡΡ‚ΠΈΡŽ Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ прогрСссии, Π² Ρ‚ΠΎΠΌ числС ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΊΠ°ΠΊ Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒ-ΡΡƒΠΏΡ€Π΅ΡΡΠΎΡ€Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, Ρ‚Π°ΠΊ ΠΈ Π½Π° ΠΏΡ€ΠΎΡ‚ΡƒΠΌΠΎΡ€ΠΎΠ³Π΅Π½Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ

    Production and characterisation of a SARS-CoV-2 S-protein RBD homodimer with increased avidity for specific antibodies

    Get PDF
    Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies.The aim of the study was to obtain and characterise a SARS-CoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies.Materials and methods: the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved mono clonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones.Results: the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD’s ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30–50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies.Conclusions: the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein

    ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ характСристика Π³ΠΎΠΌΠΎΠ΄ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ RBD S-Π±Π΅Π»ΠΊΠ° SARS-CoV-2, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Π°Π²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ спСцифичСским Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌ

    Get PDF
    Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies. The aim of the study w as t o obtain and characterise a SARSCoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies. Materials and methods: the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved monoclonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones. Results: the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD’s ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30–50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies. Conclusions: the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein.Π’Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ, ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΌ ΠΏΡ€ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π΅ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ прослойки Ρƒ насСлСния ΠΈ эффСктивности Π²Π°ΠΊΡ†ΠΈΠ½Π°Ρ†ΠΈΠΈ насСлСния, являСтся ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Π²Ρ‹ΡΠ²Π»Π΅Π½ΠΈΡŽ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ вирусу SARS-CoV-2 с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ бСзопасного, простого ΠΈ быстрого ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰Π΅Π³ΠΎ использования ΠΆΠΈΠ²Ρ‹Ρ… вирусов, ΠΈΠΌΠ΅Π΅Ρ‚ большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для Π±ΠΎΡ€ΡŒΠ±Ρ‹ с ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠ΅ΠΉ COVID-19. Для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ тСст-систСм для провСдСния ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (ИЀА), Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠ΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ высокоочищСнного Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π° (RBD) S-Π±Π΅Π»ΠΊΠ°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ высокой Π°Π²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ спСцифичСским Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ характСристика Π³ΠΎΠΌΠΎΠ΄ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ RBD S-Π±Π΅Π»ΠΊΠ° вируса SARS-CoV-2, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ RBD, для создания ИЀА тСст-систСмы для выявлСния ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Π²ΠΈΡ€ΡƒΡΠ½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π΄ΠΈΠ·Π°ΠΉΠ½ гСнСтичСской конструкции ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ in silico. Π‘Ρ‚Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ линию ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ трансфСкции ΠΊΠ»Π΅Ρ‚ΠΎΠΊ CHO-S, сСлСкции Π½Π° Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ΅ ΠΈ ΠΎΡ‚Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ»ΠΎΠ½Π°. Π Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ RBD ΠΎΡ‡ΠΈΡ‰Π°Π»ΠΈ с использованиСм хроматографичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΡƒΡŽ ΠΈ Π³ΠΎΠΌΠΎΠ΄ΠΈΠΌΠ΅Ρ€Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡ‹ RBD. ΠΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ВСстСрн-Π±Π»ΠΎΡ‚, биослойной ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ нСпрямго ИЀА. Для Π°Π½Π°Π»ΠΈΠ·Π° использовали ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° GamXRH19, GamP2C5 ΠΈ h6g3, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ сывороток ΠΊΡ€ΠΎΠ²ΠΈ Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π², Π²Π°ΠΊΡ†ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ Π“Π°ΠΌ-ΠšΠžΠ’Π˜Π”-Π’Π°ΠΊ, ΠΈ Π½Π΅Π²Π°ΠΊΡ†ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° клСточная линия CHO-S, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ RBD S-Π±Π΅Π»ΠΊΠ° вируса SARS-CoV-2. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ fed-batch Π±ΠΎΠ»Π΅Π΅ 7 суток Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ RBD способСн ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π³ΠΎΠΌΠΎΠ΄ΠΈΠΌΠ΅Ρ€Ρ‹ Π·Π° счСт наличия нСспарСнных цистСинов. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ Π²Ρ‹Ρ…ΠΎΠ΄ ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ RBD ΠΈΠ· ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости составил 30–50 ΠΌΠ³/Π». ΠœΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Π°Ρ ΠΈ гомодимСрная Ρ„ΠΎΡ€ΠΌΡ‹ RBD Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ гСль-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΠΎ способности Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ со спСцифичСскими ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ сыворотками ΠΊΡ€ΠΎΠ²ΠΈ ΠΎΡ‚ Π²Π°ΠΊΡ†ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π². ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ гомодимСрная Ρ„ΠΎΡ€ΠΌΠ° Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ RBD ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Π°Π²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌ ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌ Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Π²Π°ΠΊΡ†ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ…. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: гомодимСрная Ρ„ΠΎΡ€ΠΌΠ° Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ RBD ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ для Π°Π½Π°Π»ΠΈΠ·Π° уровня Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΌΡƒ Π΄ΠΎΠΌΠ΅Π½Ρƒ S-Π±Π΅Π»ΠΊΠ° вируса SARS-CoV-2

    rAAV expressing recombinant antibody for emergency prevention and long-term prophylaxis of COVID-19

    Get PDF
    IntroductionNumerous agents for prophylaxis of SARS-CoV-2-induced diseases are currently registered for the clinical use. Formation of the immunity happens within several weeks following vaccine administration which is their key disadvantage. In contrast, drugs based on monoclonal antibodies, enable rapid passive immunization and therefore can be used for emergency pre- and post-exposure prophylaxis of COVID-19. However rapid elimination of antibody-based drugs from the circulation limits their usage for prolonged pre-exposure prophylaxis.MethodsIn current work we developed a recombinant adeno-associated viral vector (rAAV), expressing a SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibody P2C5 fused with a human IgG1 Fc fragment (P2C5-Fc) using methods of molecular biotechnology and bioprocessing.Results and discussionsA P2C5-Fc antibody expressed by a proposed rAAV (rAAV-P2C5-Fc) was shown to circulate within more than 300 days in blood of transduced mice and protect animals from lethal SARS-CoV-2 virus (B.1.1.1 and Omicron BA.5 variants) lethal dose of 105 TCID50. In addition, rAAV-P2C5-Fc demonstrated 100% protective activity as emergency prevention and long-term prophylaxis, respectively. It was also demonstrated that high titers of neutralizing antibodies to the SARS-CoV-2 virus were detected in the blood serum of animals that received rAAV-P2C5-Fc for more than 10 months from the moment of administration.Our data therefore indicate applicability of an rAAV for passive immunization and induction of a rapid long-term protection against various SARS-CoV-2 variants

    SF-SRGAN: PROGRESSIVE GAN-BASED FACE HALLUCINATION

    Get PDF
    Facial hallucination is a technique that has emerged recently thanks to advances in deep learning. It can be used in various tasks such as face recognition in the wild, human identification, pedestrian re-identification, face analysis, and so on. We propose a wavelet-integrated trained face hallucination model to synthesize photorealistic face images called SF-SRGAN. The multi-stage progressive hallucination strategy is based on GAN architecture. The proposed generator consists of sequential cascade modules, each of which increases the scale by 2×. Each module has a complex structure of two branches: a progressive face hallucination branch for feature extraction and reconstruction and edge-preserving branch for high frequency detail extraction. The main difference from other progressive GAN-based face hallucination networks is that the two branches fuse followed by each cascade 2×. The model is trained and tested on popular public face datasets such as the CelebA-HQ dataset, the LFW dataset, and the Helen dataset with promising photorealistic results

    Alkynyl derivatives of selenophene

    No full text
    corecore