5,504 research outputs found

    analysis of dynamic instabilities in bridges under wind action through a simple friction based mechanical model

    Get PDF
    Abstract In the field of stability of structures under nonconservative loads, the concept of follower force has long been debated by scientists due to the lack of actual experimental evidence. Bigoni and Noselli's work [2] aimed to investigate flutter and divergence instability phenomena through a purely mechanical model with Coulomb friction represents a praiseworthy attempt to shed light on this issue. A two-degree-of-freedom (DOF) system, conceived as a variant of the Ziegler column, was set up experimentally. The follower load was induced by a frictional force acting on a wheel mounted at the column end, so that the rolling friction vanishes and the sliding frictional force keeps always coaxial to the column, thus representing a tangential follower force. Along this research line, in this contribution a model is elaborated that stems from the analysis of an elastically supported rigid plate that represents the behaviour of a bridge deck suspended on springs and subjected to a wind-induced force. The wind force has been simulated by a Coulomb friction force acting on a wheel mounted on the plate aerodynamic centre, so that the sliding friction force keeps perpendicular to the plate axis throughout the system motion, thus representing a follower force. To properly reproduce the wind force, the friction force is applied to the wheel by a lever mechanism wherein one of the two lever arms involves the plate rotation via a particular circular guide. The corresponding equations of motion of the bridge deck are derived in a completely dimensionless form. Depending on the mechanical characteristics of the plate and the magnitude of the friction force, stability, flutter or divergence phenomena may occur. The occurrence of these phenomena is numerically investigated by integration of the equations of motion. The development of an experimental framework of the model to corroborate these intuitions is the object of an ongoing research

    \eta - \eta' Mixing -- From Electromagnetic Transitions to Weak Decays of Charm and Beauty Hadrons (presented at Hadron 2011)

    Full text link
    It has been realized for a long time that knowing the \eta and \eta' wave functions in terms of quark and gluon components probes our understanding of non-perturbative QCD dynamics. Great effort has been given to this challenge -- yet no clear picture has emerged even with the most recent KLOE data. We point out which measurements would be most helpful in arriving at a more definite conclusion. A better knowledge of these wave functions will significantly help to disentangle the weight of different decay subprocesses in semi-leptonic decays of D^+, D_s^+ and B^+ mesons. The resulting insights will be instrumental in treating even non-leptonic B transitions involving η\eta and ηâ€Č\eta^{\prime} and their CP asymmetries; thus they can sharpen the case for or against New Physics intervening there.Comment: Prepared for HADRON 201

    Memristive devices based on single ZnO nanowires-from material synthesis to neuromorphic functionalities

    Get PDF
    Memristive and resistive switching devices are considered promising building blocks for the realization of artificial neural networks and neuromorphic systems. Besides conventional top-down memristive devices based on thin films, resistive switching devices based on nanowires (NWs) have attracted great attention, not only for the possibility of going beyond current scaling limitations of the top-down approach, but also as model systems for the localization and investigation of the physical mechanism of switching. This work reports on the fabrication of memristive devices based on ZnO NWs, from NW synthesis to single NW-based memristive cell fabrication and characterization. The bottom-up synthesis of ZnO NWs was performed by low-pressure chemical vapor deposition according to a self-seeding vapor-solid (VS) mechanism on a Pt substrate over large scale (∌cm2), without the requirement of previous seed deposition. The grown ZnO NWs are single crystalline with wurtzite crystal structure and are vertically aligned respect to the growth substrate. Single NWs were then contacted by means of asymmetric contacts, with an electrochemically active and an electrochemically inert electrode, to form NW-based electrochemical metallization memory cells that show reproducible resistive switching behaviour and neuromorphic functionalities including short-term synaptic plasticity and paired pulse facilitation. Besides representing building blocks for NW-based memristive and neuromorphic systems, these single crystalline devices can be exploited as model systems to study physicochemical processing underlaying memristive functionalities thanks to the high localization of switching events on the ZnO crystalline surface

    Mass spectrometric evidence for collisionally induced removal of H2 from monoanions of 10B nido-carborane derivatives investigated by electrospray ionization quadrupole linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Some newly synthesized 10B nido-carborane derivatives, i.e., 7,8-dicarba-nido-undecaborane monoanions ([7-Me-8-R-C2B9H10]-K+, R = H, butyl, hexyl, octyl and decyl), have been fully characterised and examined by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry with liquid chromatographic separation (LC/ESI-FTICR-MS). These boron-containing compounds exhibit abundant molecular ions ([M]−) at m/z 140.22631 [CB9H14]−, m/z 196.28883 [CB9H22]−, m/z 224.32032 [CB9H26]−, m/z 252.35133 [CB9H30]− and m/z 280.38354 [CB9H34]− at the normal tube lens voltage setting of −90 V, which was an instrumental parameter value selected in the tuning operation. Additional [M–nH2]− (n = 1−4) ions were observed in the mass spectra when higher tube lens voltages were applied, i.e., −140 V. High-resolution FTICR-MS data revealed the accurate masses of fragment ions, bearing either an even or an odd number of electrons. Collision-induced dissociation of the [M–nH2]− ions (n = 0–4) in the quadrupole linear ion trap (LTQ) analyzer confirmed the loss of hydrogen molecules from the molecular ions. It is suggested that the loss of H2 molecules from the alkyl chain is a consequence of the stabilization effect of the nido-carborane charged polyhedral skeleton

    Structure-Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films

    Get PDF
    Resistive switching mechanisms underlying memristive devices are widely investigated, and the importance as well as influence of ambient conditions on the electrical performances of memristive cells are already recognized. However, detailed understanding of the ambient effect on the switching mechanism still remains a challenge. This work presents an experimental investigation on the effect of moisture on resistive switching performances of ZnO-based electrochemical metallization memory cells. ZnO thin films are grown by chemical vapor deposition (CVD) and radio frequency sputtering. Water molecules are observed to influence electrical resistance of ZnO by affecting the electronic conduction mechanism and by providing additional species for ionic conduction. By influencing dissolution and migration of ionic species underlying resistive switching events, moisture is reported to tune resistive switching parameters. In particular, the presence of H2O is responsible for a decrease of the forming and SET voltages and an increase of the ON/OFF resistance ratio in both CVD and sputtered films. The effect of moisture on resistive switching performance is found to be more pronounced in case of sputtered films where the reduced grain size is responsible for an increased adsorption of water molecules and an increased amount of possible pathways for ion migration

    Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators

    Get PDF
    The extreme miniaturization in NEMS resonators offers the possibility to reach an unprecedented resolution in high-performance mass sensing. These very low limits of detection are related to the combination of two factors: a small resonator mass and a high quality factor. The main drawback of NEMS is represented by the highly complex, multi-steps, and expensive fabrication processes. Several alternatives fabrication processes have been exploited, but they are still limited to MEMS range and very low-quality factor. Here we report the fabrication of rigid NEMS resonators with high-quality factors by a 3D printing approach. After a thermal step, we reach complex geometry printed devices composed of ceramic structures with high Young’s modulus and low damping showing performances in line with silicon-based NEMS resonators ones. We demonstrate the possibility of rapid fabrication of NEMS devices that present an effective alternative to semiconducting resonators as highly sensitive mass and force sensors

    Implementation and validation of a new method to model voluntary departures from emergency departments

    Get PDF
    In the literature, several organizational solutions have been proposed for determining the probability of voluntary patient discharge from the emergency department. Here, the issue of self-discharge is analyzed by Markov theory-based modeling, an innovative approach diffusely applied in the healthcare field in recent years. The aim of this work is to propose a new method for calculating the rate of voluntary discharge by defining a generic model to describe the process of first aid using a “behavioral” Markov chain model, a new approach that takes into account the satisfaction of the patient. The proposed model is then implemented in MATLAB and validated with a real case study from the hospital “A. Cardarelli” of Naples. It is found that most of the risk of self-discharge occurs during the wait time before the patient is seen and during the wait time for the final report; usually, once the analysis is requested, the patient, although not very satisfied, is willing to wait longer for the results. The model allows the description of the first aid process from the perspective of the patient. The presented model is generic and can be adapted to each hospital facility by changing only the transition probabilities between states

    Current Pathophysiological and Genetic Aspects of Dilated Cardiomyopathy

    Get PDF
    Dilated cardiomyopathy is the most common form of cardiomyopathy and the second leading cause of left ventricular dysfunction with highly variable clinical presentation and prognosis. The clinical courses vary and are strongly heterogeneous, ranging from asymptomatic patients to those suffering from intractable heart failure or sudden cardiac death due to arrhythmias. Previous studies have reported a 10 years cardiovascular mortality up to 40% in developed countries, due to advanced heart failure or sudden cardiac death. However, the prognosis of dilated cardiomyopathy patients is variable and depends on multiple risk factors. This chapter provides a review of dilated cardiomyopathy with specific focus on the pathophysiological aspects and genetic etiology of the disease
    • 

    corecore