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Abstract

In the field of stability of structures under nonconservative loads, the concept of follower force has long been debated by scientists
due to the lack of actual experimental evidence. Bigoni and Noselli’s work [2] aimed to investigate flutter and divergence instability
phenomena through a purely mechanical model with Coulomb friction represents a praiseworthy attempt to shed light on this issue.
A two-degree-of-freedom (DOF) system, conceived as a variant of the Ziegler column, was set up experimentally. The follower
load was induced by a frictional force acting on a wheel mounted at the column end, so that the rolling friction vanishes and
the sliding frictional force keeps always coaxial to the column, thus representing a tangential follower force. Along this research
line, in this contribution a model is elaborated that stems from the analysis of an elastically supported rigid plate that represents
the behaviour of a bridge deck suspended on springs and subjected to a wind-induced force. The wind force has been simulated
by a Coulomb friction force acting on a wheel mounted on the plate aerodynamic centre, so that the sliding friction force keeps
perpendicular to the plate axis throughout the system motion, thus representing a follower force. To properly reproduce the wind
force, the friction force is applied to the wheel by a lever mechanism wherein one of the two lever arms involves the plate rotation
via a particular circular guide. The corresponding equations of motion of the bridge deck are derived in a completely dimensionless
form. Depending on the mechanical characteristics of the plate and the magnitude of the friction force, stability, flutter or divergence
phenomena may occur. The occurrence of these phenomena is numerically investigated by integration of the equations of motion.
The development of an experimental framework of the model to corroborate these intuitions is the object of an ongoing research.
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1. Introduction

In the field of stability of structures under nonconservative loads, the concept of follower force has long been de-
bated by scientists, and the lack of actual experimental evidence has given rise to a controversy about the real existence
of such follower force [1]. By this term we denote a force that is not derivable from a potential and which depends
on the instantaneous position of the system, i.e., a configuration-dependent force. The water jet observed at the noz-
zle of a fluid-conveying pipe or the rocket thrust of a flexible missile are just a few real-world examples of follower
forces. Other physical phenomena involving follower forces are related to the so-called “aeroelastic flutter”, i.e., the
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dynamic instability that may occur in bridges when self-excited oscillations driven by wind increase in amplitude as
if the system had an effective negative damping. Many scientists and researchers believe such aeroelastic fluttering
triggered the never-before-seen twisting mode of vibration of the Tacoma Bridge in 1940, led to an exponentially
growing response and eventually caused the well-known catastrophic collapse of the bridge.

Investigating follower forces from a numerical and, above all, an experimental point of view is rather intricate as
they involve either complex fluid-structure interactions or extremely-short-duration effects. Bigoni and Noselli’s work
[2] aimed to investigate flutter and divergence phenomena through a purely mechanical model with Coulomb friction
represents a praiseworthy attempt to shed light on this issue. They demonstrated, by a two-DOF system designed as a
variant of the Ziegler column, the existence of the follower force on an experimental basis.

Along this research line, in this contribution a mechanical model is elaborated that stems from the analysis of a
horizontal elastically supported rigid plate under aerodynamic forces [3]. This schematic model aims at reproducing
the behaviour of a bridge deck suspended on springs and subjected to a wind-induced force. The effects of the wind
(follower) forces are simulated by a Coulomb-type friction force. Indeed, we introduce a wheel mounted on a point
identifying the aerodynamic centre of the bridge and having axis perpendicular to the longitudinal direction, so that the
rolling friction cancels out and the sliding friction force keeps perpendicular to the plate axis throughout the system
motion. The friction force accordingly represents a follower force for the system. Similar to the experiment in [2],
the vertical reaction entering the Coulomb friction law is applied to the wheel by a lever mechanism. The equations
of motion of this simple two-DOF system representing the bridge deck are derived and expressed in a completely
dimensionless form. Depending on the magnitude of the friction force and the mechanical characteristics of the plate,
stability, flutter or divergence phenomena are observed in the model (which reflects the bridge behaviour for increasing
value of the associated wind velocity). The development of an experimental framework of the model to corroborate
these intuitions is the object of an ongoing research.

2. Bridge aerodynamics, associated mechanical model and governing equations

The description of the mechanical behaviour of bridges under wind action is a challenging field that has attracted a
plethora of researchers [4]. Strictly speaking, highly fluctuating pressure fields arise from the turbulent nature of wind
flow, thus resulting in a so-called ”aerodynamic load”. Additionally, the bridge oscillates according to its vibrational
natural characteristics, which gives rise to “aeroelastic” phenomena involving complex fluid-structure interaction.
Consequently, resonance-type or instability phenomena may occur depending on the geometry and mechanical prop-
erties of the bridge, as well as the main features of the turbulent flow such as its mean velocity.

The above complex phenomena are here simplified in order to investigate the main qualitative aspects of the prob-
lem. Let us consider a bridge of length L sketched by a rigid plate (representing the section of the roadway) of unit
width and specific mass m per unit length, suspended on springs of stiffness k; and k; (the stiffness coefficients de-
pend on the actual bridge suspension cables). The system has two DOFs: the rotation 6 about the z-axis (i.e., the
counterclockwise angle between the horizontal plane and the bridge section in the deformed state), which is depicted
as a red arrow in the 3D isometric view, and the vertical motion w of the plate midpoint (or centre of gravity) G. The
plate is loaded by wind of velocity v. Under the simplifying hypothesis of slow steady oscillations, as those of very
long span suspended bridges, the fluid-structure interaction may be neglected and the wind action can be represented
by the wind force resultant P,, = kv? sin 6 acting on the so-called aerodynamic centre of the bridge C, where k is a
constant and the location of C does not depend on the angle 6. For two-dimensional incompressible flow C is located
at a distance a = L/4 relative to the centre of gravity G, on the windward side.

The simplified aerodynamic problem of the bridge discussed above can be reproduced by the schematic mechanical
model sketched in Fig. 1: the wind action is replaced by a Coulomb-type friction force exerted by a perfect (massless
and fully free of rotating) wheel. The wheel, rigidly connected to the plate of length L identifying the bridge cross-
section, slides with pure Coulomb friction on an underlying rigid plane. This plane is ideally touched at a specific
point, the aforementioned aerodynamic centre C, and is moved at the speed —v,e;, with e; indicating the unit vector
corresponding to the horizontal direction. For convenience, in Fig. 1 besides the fixed reference system e; — e, we
introduce a moving system e, — e;. The wheel axis is perpendicular to the longitudinal direction, i.e., it is directed
along e, (with e, = —sinfe; + cos 6 e;), therefore the rolling friction (along e;) cancels out and the sliding friction
force keeps perpendicular to the plate axis throughout the system motion. Consequently, the resulting sliding friction
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Fig. 1. Friction-based mechanical model outlining the behaviour of a bridge under wind action: a) 3D isometric view; b) 2D sketch of the model

force is a configuration-dependent follower force for the system being analysed. The sliding friction force is generated
via a lever mechanism using the structure itself as a lever (exploiting the rotation about the y-axis, which is depicted as
a green arrow in the 3D isometric view) and applying a dead load W to a point D as sketched in Fig. 1. The originated
sliding friction force on the point C is accordingly expressed by the Coulomb friction law in terms of the vertical
reaction R. In order for such sliding friction force to properly reproduce the above wind force resultant P,, (in which
the sin @ term appears), the vertical reaction R should include the angle of rotation 6. To this aim, a specific circular
guide with diameter b is designed such that one of the two lever arms involves the sought sin § term, so that
4 sgn (C';R ifC5 ¢ [, ]
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where a superimposed dot denotes the derivative with respect to time, F' = (b/a) Wu (Cf,) and ,u(C[S,) is the friction
coefficient. In other words, D is forced to follow the circular guide. In Eq. (1) the Coulomb friction law has been
simplified as no stiction is considered (which would lead to introducing different static and dynamic u values) and
the regularization proposed in [5] is adopted, with & being a small parameter, say £ = 107> m/s. Considering the
displacement vector C'C = (acos 8 —a) e; + (w + a sin 6) e, the velocity of the contact point C is C = (-absind e +
(W + afcos6) e;. From Eq. (1) the friction coefficient 4 is a function of the velocity C3, i.e., the sliding component
of the velocity of the wheel relative to the plane C p = C- Vp = C+ vpe; projected along ey, which is expressed as
follows

C,=C,-e,=(C+vyer) - e = absin’d — v, sinf +cos  + afcos’d = ad — v, sin 0 + v cos 6. )
According to D’ Alembert’s principle, the equations of motion, obtained as the equations of dynamic equilibrium
of vertical forces and moments about the centre of the plate G , read
L
mLy + Bw + (ki + ko)w + (ky — kl)E sinf = Fsinf cos 6
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where for the sake of generality, Voigt-type (viscous) translational and rotational damping is considered, whose cor-
responding coefficients are indicated as 8, and j3,, respectively. Both the forms of damping are assumed as being
concentrated at the midpoint G wherein a linear guide allowing the vertical motion w and a spherical hinge allowing
the rotation 8 are placed. The set of two coupled nonlinear differential equations (3) describes both the mechanical
model under frictional forces of Fig. 1 and the bridge model under aerodynamic forces. Stability analysis of Egs. (3)
will accordingly indicate whether stability, flutter or divergence phenomena occur in the bridge. For the sake of con-
venience, the set of equations (3) is rewritten in a completely dimensionless form. To this aim, we introduce the
following positions and auxiliary variables

w a ki ky B Br
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Additionally, a dimensionless time variable 7 = w1 is introduced so that the first and second derivatives are given by
X = 0x/0t = ? 0x/01 = W?x’ and X = 8%x/0F* = wW? 8*x/071* = WX’ (With x = u, §). We eventually get
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that is the sought system of differential equations in terms of the dimensionless variables u = u(7) and 6 = 6(7).

3. Stability analysis of Eqgs. (5): flutter and divergence phenomena

Due to the large-displacement assumption, Eqs. (5) are two nonlinear differential equations. Stability analysis of
the model is performed with regard to the linearized counterpart of Egs. (5) by a Taylor series expansion, in the form

1
W+ EUW A+ )u+(y— 1)§9=f9
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that is the system governing the dynamics of the model for configurations in a small neighbourhood of the trivial
one (u = 0 = 0), i.e., under the small-displacement assumption (sinf — 6,cosf — 1). The loss of stability due to
divergence (equivalent to static buckling) may be determined by setting #”” = §” = 0 and ¥’ = 8’ = 0. Consequently,
Egs. (6) become a system of two linear algebraic homogeneous equations and the loss of stability occurs when
det[c;;] = 0 with ¢;; being the coefficients of u and 6, which yields

2

Ja = 1 —x+2a(1+y)

(N
from which it is found that divergence is possible only if ¥y < Qa + 1)/(1 — 2a@) (for @« = 1/4, ¥ < 3). In reality,
divergence may also occur for a smaller value than that reported in (7) as will be demonstrated below. Indeed,
the critical loads for flutter and divergence are actually computed by substituting two trial time-harmonic functions
u = Ue™™" and § = @e™ into Eqs. (6) and investigating the resulting dynamic solutions. Two linear algebraic
homogeneous equations for the amplitudes U and ® arise, whereby non-trivial solutions are possible only if the
determinant of the coefficient matrix vanishes, which yields the following fourth-order characteristic equation

W+ L’ + prw’ + p3w+ps =0 (8)
where the coefficients are

p1=12i& +ié&; pr=4Q@fa-356—x-1);
p3=-3i@5A+x)+&A -4fa+x); pa=62y—f(-x+2a(l +yx).
In the absence of viscosity, the p, coefficient does not include damping terms, p; and p3 vanish so that Eq. (8) turns

out to be a second-order equation in w? whose solutions are 2a)l.2 =—py £ A2 with A = p% —4py. This gives rise to
the following possibilities: 1) for p, < 0 and A > 0 four real w; values arise, a situation corresponding to stability as

C))
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Fig. 2. Stability analysis of Egs. (6): a) critical load dependence on y; b) real and imaginary parts of the frequencies from Eq. (8) for y =2

the vibrations are sinusoidal with constant amplitude; 2) for A < 0 there are two complex-conjugate pairs of w;, which
indicates flutter instability as the solutions are sinusoidal with exponentially varying amplitude, two blowing-up and
two decaying with time; 3) for p, > 0 and A > 0 two purely imaginary complex-conjugate pairs of w; arise, which
denotes divergence instability as the vibrations are of exponential-type, two amplifying and two decaying with time.
As a subcase of 3), if p, > 0 and ps = 0 two frequencies are purely imaginary and the other two are zero (since
AV? = D,), all denoting divergence. The latter situation (w = 0) has already been discussed in (7) since ps = 0,
considering Eq. (9), corresponds to f = f reported in Eq. (7). It is worth noting that the actual critical load for
divergence is computed by setting A = 0 with p, > 0, which leads to a smaller load than that reported in (7) by setting
p4 = 0. On the other hand, the critical load for flutter is given by A = 0 with p, < 0. For example, for @ = 1 /4 the
following critical load for flutter and divergence are obtained, respectively

2 2
Siwe = g(—l +3x - \/5)(2 - 2)(—3), Jaw = g(—l +3x + 4/5x* -2¢ - 3) (10)

from which it is found that flutter occurs only if y > 1. Finally, for p4 < 0, i.e., for f > f, the discriminant A is
always positive, two frequencies are real and two are purely imaginary complex-conjugate, denoting divergence.
When the damping terms are included, the four characteristic frequencies resulting from Eq. (8)) give rise to the
following possibilities: 1) Im(w;) < 0 means stability; 2) Im(w;) > 0 and Re(w;) # 0 corresponds to flutter instability;
3) Im(w;) > 0 and Re(w;) = 0 leads to divergence instability. In Fig. 2 the above concepts are clarified: in Fig. 2a) the
three critical loads of Egs. (7)) and (10), » are depicted for @ = 1 /4, from which we notice than f4, < f throughout
the range of y of interest. Furthermore, as seen above flutter may occur only if y > 1, whereas for 0 < y < 1
increasing the load f would lead to a sharp transition from stability to divergence instability. Generally, the two cables
of a suspended bridge have approximately the same stiffness, i.e., ¥ ~ 1. In order to highlight a wide flutter range in
the present stability analysis, in Fig. 2b) the solution frequencies of the characteristic equation (8) are reported for a
quite exaggerated stiffness ratio y = 2: the real and imaginary parts of w; are plotted separately in order to identify
the associated stability behavior. We compare the regions of flutter (Im(w;) > 0 and Re(w;) # 0) in the viscoelastic
case for some arbitrary damping ratios (&, = &, = 0.05), fau = 0.7, faiv = 6.2 (continuous lines in Fig. 2b)), and
in the absence of damping (¢, = &, = 0), faue = 0.93, faiv = 5.74 (dash-dotted lines in Fig. 2b)): this comparison
demonstrates that the viscosity slightly broadens the interval of flutter as compared to the non-damped case.

4. Dynamic solutions by integration of the nonlinear equations of motion

The stability analysis discussed in the previous Section is further investigated by examining the dynamic solutions
of Egs. (5). Depending on the load magnitudes, stability, flutter and divergence phenomena are expected to occur. For
the same mechanical parameters as in Fig. 2b) (y = 2, @ = 1/4, & = & = 0.05), three increasing load magnitudes
are analyzed, namely f = 0.2, 1 and 7, which correspond to stability, flutter and divergence instability, respectively.
The resulting time-histories of the response in terms of u and 6 are reported in Fig. 3. According to the expectations,
stability is characterized by a decaying response with time (due to damping), flutter instability becomes manifest by
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Fig. 3. Dynamic solution of Egs. (5): a), b) stability; c), d) flutter instability; e), ) divergence instability

a blowing-up vibrational response that eventually attains a steady state (in line with the experimental findings in [2]),
and divergence instability is an exponentially growing motion without oscillations.

5. Concluding remarks and future developments

In this contribution, the occurrence of dynamic instabilities in bridges under wind action has been numerically
investigated. Following an experimental work of the literature [2], the stability behaviour of the bridge has been
analysed via a mechanical model in which the aerodynamic (wind) forces have been simulated by a Coulomb-type
friction force. A two-DOF mechanical model has been designed in which the friction force has been applied by means
of a wheel and represents a follower force for the system being analysed. After discussing the main assumptions
of the model, the equations of motion have been derived and the stability analysis has been performed so as to
identify the flutter and divergence regions depending on the mechanical parameters of the system and the magnitude
of the friction force. Stability, flutter and divergence instability have been scrutinized by integrating the nonlinear
equations of motion. The numerical investigation carried out in this study represents the basis for the development of
an experimental framework of the model, which is the object of an ongoing research.
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