32,601 research outputs found
Width and extremal height distributions of fluctuating interfaces with window boundary conditions
We present a detailed study of squared local roughness (SLRDs) and local
extremal height distributions (LEHDs), calculated in windows of lateral size
, for interfaces in several universality classes, in substrate dimensions
and . We show that their cumulants follow a Family-Vicsek
type scaling, and, at early times, when ( is the correlation
length), the rescaled SLRDs are given by log-normal distributions, with their
th cumulant scaling as . This give rise to an
interesting temporal scaling for such cumulants , with . This scaling is analytically
proved for the Edwards-Wilkinson (EW) and Random Deposition interfaces, and
numerically confirmed for other classes. In general, it is featured by small
corrections and, thus, it yields exponents 's (and, consequently,
, and ) in nice agreement with their respective universality
class. Thus, it is an useful framework for numerical and experimental
investigations, where it is, usually, hard to estimate the dynamic and
mainly the (global) roughness exponents. The stationary (for ) SLRDs and LEHDs of Kardar-Parisi-Zhang (KPZ) class are also investigated
and, for some models, strong finite-size corrections are found. However, we
demonstrate that good evidences of their universality can be obtained through
successive extrapolations of their cumulant ratios for long times and large
's. We also show that SLRDs and LEHDs are the same for flat and curved KPZ
interfaces.Comment: 11 pages, 10 figures, 4 table
Entanglement and Bell's inequality violation above room temperature in metal carboxylates
In the present work we show that a special family of materials, the metal
carboxylates, may have entangled states up to very high temperatures. From
magnetic susceptibility measurements, we have estimated the critical
temperature below which entanglement exists in the cooper carboxylate
\{Cu(OCH)\}\{Cu(OCH)(2-methylpyridine)\}, and we have
found this to be above room temperature ( K). Furthermore, the
results show that the system remains maximally entangled until close to K and the Bell's inequality is violated up to nearly room temperature
( K)
- …