46,612 research outputs found

    Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals

    Get PDF
    We report on the thermally activated flux flow dependency on the doping dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found clearly that irrespective of the doping ratio, magnetoresistivity showed a distinct tail just above the Tc, offset associated with the thermally activated flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature dependence of the activation energy follows the relation U(T, B)=U_0 (B) (1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the exponent {\alpha} is changed from a low value to a high value at a crossover field of B=~2T, indicating the transition from collective to plastic pinning in the crystals. Finally, it is suggested that the 3D vortex phase is the dominant phase in the low-temperature region as compared to the TAFF region in our series samples

    Land use survey and mapping and water resources investigation in Korea

    Get PDF
    The author has identified the following significant results. Land use imagery is applicable to land use classification for small scale land use mapping less than 1:250,000. Land use mapping by satellite is more efficient and more cost-effective than land use mapping from conventional medium altitude aerial photographs. Six categories of level 1 land use classification are recognizable from MSS imagery. A hydrogeomorphological study of the Han River basin indicates that band 7 is useful for recognizing the soil and the weathering part of bed rock. The morphological change of the main river is accurately recognized and the drainage system in the area observed is easily classified because of the more or less simple rock type. Although the direct hydrological characteristics are not obtained from the MSS imagery, the indirect information such as the permeability of the soil and the vegetation cover, is helpful in interpreting the hydrological aspects

    Persistent current in superconducting nanorings

    Full text link
    The superconductivity in very thin rings is suppressed by quantum phase slips. As a result the amplitude of the persistent current oscillations with flux becomes exponentially small, and their shape changes from sawtooth to a sinusoidal one. We reduce the problem of low-energy properties of a superconducting nanoring to that of a quantum particle in a sinusoidal potential and show that the dependence of the current on the flux belongs to a one-parameter family of functions obtained by solving the respective Schrodinger equation with twisted boundary conditions.Comment: 5 pages, 1 figur

    Anomalous Transmission Phase of a Kondo-Correlated Quantum Dot

    Full text link
    We study phase evolution of transmission through a quantum dot with Kondo correlations. By considering a model that includes nonresonant transmission as well as the Anderson impurity, we explain unusually large phase evolution of about π\pi in the Kondo valley observed in recent experiments. We argue that this anomalous phase evolution is a universal property that can be found in the high-temperature Kondo phase in the presence of the time-reversal symmetry.Comment: 5 pages, 3 figure

    Effect of alum (top-dressed and mixed) with rice hulls on pH and ammonia emissions from poultry houses

    Get PDF
    The use of aluminum sulfate [alum; Al2(SO3)4·14H2O] as top dressing to poultry litter has been proven in reducing ammonia (NH3) volatilization under both laboratory and field tests; however, there has been no information of alum application in mixing methods from poultry litter or rice hulls. The aim of the experiment was to evaluate the effects of alum top dressed or mixed with rice hulls as litter management methods on pH and NH3 emissions. A total of 180 broiler chickens were randomly allocated to 12 pens to a density of 0.07 m2/bird for 5 weeks, creating 4 replicates of 3 experimental treatments with 15 birds per experimental unit as a completely randomized design. The treatments included an untreated control, 100 g of alum (top dressing) and 100 g of alum (mixed)/kg of rice hull. In addition, alum treatment was usually applied by top dressing onto the rice hulls or fully mixed with the rice hulls. During the experimental period, pH and NH3 emissions were significantly reduced by the two different methods of alum amendments (P < 0.05) in the litter over time compared with the controls except for NH3 emissions at 1 through 3 weeks. However, no significant differences (P > 0.05) in pH and NH3 emission were observed between the two different methods with alum for 5 weeks. The reduction in NH3 emission from 100 g of alum top-dressed and 100 g of alum fully mixed with kg of rice hull at 5 weeks was 50 and 51%, respectively. In summary, these results indicate that “mixing” methods of alum as well as top dressing would serve as a suitable method for decreasing NH3 emission, which resulted in lower pH.Key words: Alum, top dressing, mixing, pH, ammonia

    Quantum Phase Transitions in Josephson Junction Chains

    Full text link
    We investigate the quantum phase transition in a one-dimensional chain of ultra-small superconducting grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctuations; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.Comment: REVTeX+5 EPS figures, To appear in PRB Rapid

    Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5

    Full text link
    In Cerium-based heavy electron materials, the 4f electron's magnetic moments bind to the itinerant quasiparticles to form composite heavy quasiparticles at low temperature. The volume of the Fermi surfacein the Brillouin zone incorporates the moments to produce a "large FS" due to the Luttinger theorem. When the 4f electrons are localized free moments, a "small FS" is induced since it contains only broad bands of conduction spd electrons. We have addressed theoretically the evolution of the heavy fermion FS as a function of temperature, using a first principles dynamical mean-field theory (DMFT) approach combined with density functional theory (DFT+DMFT). We focus on the archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum critical point. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity coherence peak observed at T ~ 50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page Supplementary information, 2 figures for the Supplementary information. Supplementary movie 1 and 2 are provided on the webpage(http://www-ph.postech.ac.kr/~win/supple.html

    Four-Dimensional Effective Supergravity and Soft Terms in M-Theory

    Get PDF
    We provide a simple macroscopic analysis of the four-dimensional effective supergravity of the Ho\v{r}ava-Witten M-theory which is expanded in powers of κ2/3/ρV1/3\kappa^{2/3}/\rho V^{1/3} and κ2/3ρ/V2/3\kappa^{2/3}\rho/V^{2/3} where κ2\kappa^2, VV and ρ\rho denote the eleven-dimensional gravitational coupling, the Calabi-Yau volume and the eleventh length respectively. Possible higher order terms in the K\"ahler potential are identified and matched with the heterotic string corrections. In the context of this M-theory expansion, we analyze the soft supersymmetry-breaking terms under the assumption that supersymmetry is spontaneously broken by the auxiliary components of the bulk moduli superfields. It is examined how the pattern of soft terms changes when one moves from the weakly coupled heterotic string limit to the M-theory limit.Comment: Latex, 23 pages, 3 figures. References are added and the discussion of the M-theory expansion parameters is enlarge

    String theoretic axion coupling and the evolution of cosmic structures

    Full text link
    We examine the effects of the axion coupling to RR~R\tilde{R} on the evolution of cosmic structures. It is shown that the evolutions of the scalar- and vector-type perturbations are not affected by this axion coupling. However the axion coupling causes an asymmetric evolution of the two polarization states of the tensor-type perturbation, which may lead to a sizable polarization asymmetry in the cosmological gravitational wave if inflation involves a period in which the axion coupling is important. The polarization asymmetry produced during inflation are conserved over the subsequent evolution as long as the scales remain in the large-scale limit, and thus this may lead to an observable trace in the cosmic microwave background radiation.Comment: 10 pages, REVte
    corecore