724 research outputs found

    PECULIARITIES IN THE CLINICAL COURSE OF GUILLAIN-BARRE'S POLYRADICULONEURITIS

    Get PDF
    No abstrac

    ЀлСксибилната Сндоскопия ΠΏΡ€ΠΈ заболявания Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° – диагностични Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΈ ΠΏΠΎΠ»Π·ΠΈ

    Get PDF
    Π¦Π΅Π»ΠΈΡ‚Π΅ Π½Π° Ρ‚Π°Π·ΠΈ статия са Π΄Π° сС ΠΏΡ€ΠΎΡƒΡ‡Π°Ρ‚ ΠΈ ΠΈΠ·Π»ΠΎΠΆΠ°Ρ‚ Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈΡ‚Π΅ ΠΈ прСдимствата Π½Π° флСксибилната Сндоскопия Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π² ΠΎΡ‚ΠΎΡ€ΠΈΠ½ΠΎΠ»Π°Ρ€ΠΈΠ½Π³ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Π°Ρ‚Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°.Π’ΡŠΡ€Ρ…Ρƒ 191 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ заболявания Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° юни 2008 Π΄ΠΎ юни 2011 Π³., Π² УНГ-ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ° Π½Π° Π£ΠœΠ‘ΠΠ› β€žΠ‘Π². Π“Π΅ΠΎΡ€Π³ΠΈβ€œ – Пловдив ΠΈΠ·Π²ΡŠΡ€ΡˆΠΈΡ…ΠΌΠ΅ Π² Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π΅Π½ ΠΏΠΎΡ€ΡΠ΄ΡŠΠΊ ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ Π»Π΅Π³Π»ΠΎΡ‚ΠΎ Π½Π° болния Ρ„ΠΈΠ±Ρ€ΠΎΠ½Π°Π·ΠΎ-Спифаринголарингоскопии. Π˜Π·ΡΠ»Π΅Π΄Π²Π°Π½Π΅Ρ‚ΠΎ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ ΠΏΠΎΠ΄ мСстна анСстСзия, с трансназалСн Π΄ΠΎΡΡ‚ΡŠΠΏ ΠΊΠ°Ρ‚ΠΎ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ…ΠΌΠ΅ Π½Π°Π·Π°Π»Π½ΠΈ дСконгСстанти. Показания Π·Π° Сндоскопията Π½Π° горния Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚ бяха – дисфония, дисфагия ΠΈ Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½ΠΎ носно дишанС ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ, Π½Π° ΠΊΠΎΠΈΡ‚ΠΎ класичСската ΠΎΠ³Π»Π΅Π΄Π°Π»Π½Π° Π΅ΠΏΠΈΡ„Π°Ρ€ΠΈΠ½Π³ΠΎ ΠΈ ларингоскопия Π½Π΅ Π΄Π°Π²Π°Ρ…Π° ΠΈΠ·Ρ‡Π΅Ρ€ΠΏΠ°Ρ‚Π΅Π»Π½Π° информация Π·Π° поставянСто Π½Π° Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π°Ρ‚Π°, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ‚Π΅ΠΆΠΊΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ°Π²Π°Ρ‰ΠΈ заболявания, ΠΏΡ€ΠΈ ΠΊΠΎΠΈΡ‚ΠΎ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Π½Π΅Ρ‚ΠΎ Π½Π° Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½Π° ларингоскопия ΠΏΠΎΠ΄ ΠΎΠ±Ρ‰Π° анСстСзия бСшС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π°Ρ€Π°Π΄ΠΈ Ρ‚Π΅ΠΆΠΊΠΈ ΠΏΡ€ΠΈΠ΄Ρ€ΡƒΠΆΠ°Π²Π°Ρ‰ΠΈ заболявания ΠΈ повишСн риск ΠΎΡ‚ ΠΆΠΈΠ²ΠΎΡ‚ΠΎΠ·Π°ΡΡ‚Ρ€Π°ΡˆΠ°Π²Π°Ρ‰ΠΈ ΠΈΠ½Ρ†ΠΈΠ΄Π΅Π½Ρ‚ΠΈ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° анСстСзията. Π Π°Π±ΠΎΡ‚Π΅Ρ…ΠΌΠ΅ с фибробронхоскоп Olympus с външСн Π΄ΠΈΠ°ΠΌΠ΅Ρ‚ΡŠΡ€ 2,2 ΠΌΠΌ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅Π½ ΠΊΠ°Π½Π°Π» 1,2 ΠΌΠΌ снабдСн с Ρ„ΠΈΠ±Ρ€ΠΎΡ‰ΠΈΠΏΠΊΠ°, ΠΊΠΎΠΉΡ‚ΠΎ ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π°Ρ…ΠΌΠ΅ Π·Π° ΠΎΠ³Π»Π΅Π΄ Π½Π° Π΄Π΅Ρ†Π° Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ ΠΈ Π½ΠΎΠ²ΠΎΡ€ΠΎΠ΄Π΅Π½ΠΈ. Π—Π° Π²ΡŠΠ·Ρ€Π°ΡΡ‚Π½ΠΈ ΠΈΠ·ΠΏΠΎΠ»Π·ΡƒΠ²Π°Ρ…ΠΌΠ΅ фибробронхоскоп Karl Storz Ρ„5,2 ΠΌΠΌ с Ρ€Π°Π±ΠΎΡ‚Π΅Π½ ΠΊΠ°Π½Π°Π» 3,2 ΠΌΠΌ. ЀиброСндоскопитС Π°Π΄Π°ΠΏΡ‚ΠΈΡ€Π°Ρ…ΠΌΠ΅ към Сндоскопска Π²ΠΈΠ΄Π΅ΠΎΠΊΠ°ΠΌΠ΅Ρ€Π° Olympus ΡΠ²ΡŠΡ€Π·Π°Π½Π° с Π²ΠΈΠ΄Π΅ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ ΠΈ записващо DVD Π·Π° фотодокумСнтация. ΠŸΡ€Π΅Π· послСдната Π³ΠΎΠ΄ΠΈΠ½Π° ΠΎΡ‚ Π½Π°ΡˆΠ΅Ρ‚ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π²Π°Π½Π΅ изслСдванията ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ със XYON флСксибилСн назофаринголарингоскоп с Π²ΠΈΠ΄Π΅ΠΎΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€.Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ: На 191 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ , ΠΎΡ‚ ΠΊΠΎΠΈΡ‚ΠΎ 151 мъТС (80,29%) ΠΈ 40 ΠΆΠ΅Π½ΠΈ (20.8%), Π½Π° срСдна Π²ΡŠΠ·Ρ€Π°ΡΡ‚ 48.4 Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΠΈΠ·Π²ΡŠΡ€ΡˆΠ²Π°Ρ…ΠΌΠ΅ фиброСндоскопии Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π°. Най-чСститС заболявания, ΠΊΠΎΠΈΡ‚ΠΎ ΠΎΡ‚ΠΊΡ€ΠΈΡ…ΠΌΠ΅ ΠΏΡ€ΠΈ сСрията ΠΎΡ‚ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ бяха слСднитС: Π±Π΅Π½ΠΈΠ³Π½Π΅Π½ΠΈ Π°Π±Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΡ‚Π΅Ρ‚ΠΈ Π½Π° ларинкса 51 (26,7%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° ларинкса 24 (12.3%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° хипофаринкса 18 (9,2%), ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΈ Π½Π° Спифаринкса 14 (7,2%), ΠΏΠ°Ρ€Π΅Π·ΠΈ Π½Π° гласнитС Π²Ρ€ΡŠΠ·ΠΊΠΈ 26 (13,4%), Π΅Π΄Π΅ΠΌ Π½Π° ларинкса 8 (4,1%), Π½Π°Π·Π°Π»Π½Π° патология 28 (14,4%) Π²Ρ€ΠΎΠ΄Π΅Π½ΠΈ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ 5 (2,5%), смущСния Π² Π°ΠΊΡ‚Π° Π½Π° Π³ΡŠΠ»Ρ‚Π°Π½Π΅Ρ‚ΠΎ слСд частични Ρ…ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π½ΠΈ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΠΈ Π½Π° ларинкса ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌ 8 (4,1%), Ρ‡ΡƒΠΆΠ΄ΠΈ Ρ‚Π΅Π»Π° Π² носа Π½Π°Π·ΠΎ,хипофаринкса ΠΈ Ρ…Ρ€Π°Π½ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° 6 (3,09%).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ЀлСксибилната Сндоскопия Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π° Π΅ ΠΈΠ·ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ инструмСнтално изслСдванС ΠΏΡ€ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Π° патология Π½Π° Π³ΠΎΡ€Π½ΠΈΡ‚Π΅ Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π½ΠΈ ΠΏΡŠΡ‚ΠΈΡ‰Π°. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°Ρ‚Π° Π΅ лСсно изпълнима ΠΏΠΎΠ΄ Π»ΠΎΠΊΠ°Π»Π½Π° анСстСзия Π² Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π½ΠΈ условия, ΠΊΠ°ΠΊΡ‚ΠΎ ΠΈ ΠΏΡ€ΠΈ Π»Π΅Π³Π»ΠΎΡ‚ΠΎ Π½Π° болния. Π’ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΠΈΡ‚Π΅ Π·Π° Π²Π·ΠΈΠΌΠ°Π½Π΅ Π½Π° биопсии ΠΏΠΎΠ΄ Π»ΠΎΠΊΠ°Π»Π½Π° анСстСзия ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° Сндоскопския ΠΎΠ³Π»Π΅Π΄ я ΠΏΡ€Π°Π²ΠΈ Ρ†Π΅Π½Π΅Π½ ΠΏΡ€ΠΈΠ΄Π°Ρ‚ΡŠΠΊ ΠΊΠ°ΠΊΡ‚ΠΎ Π² ΠΎΠ±Ρ€Π°Π·Π½ΠΎΡ‚ΠΎ изслСдванС Π½Π° горния Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚, Ρ‚Π°ΠΊΠ° ΠΈ Π² хистологичната вСрификация Π½Π° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΈ процСси Π½Π° горният Π΄ΠΈΡ…Π°Ρ‚Π΅Π»Π΅Π½ ΠΏΡŠΡ‚. ВСхнологичният Π½Π°ΠΏΡ€Π΅Π΄ΡŠΠΊ Π² областта Π΄Π°Π²Π° Π²ΡŠΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ Π·Π° създаванС Π½Π° Сндоскопска Π°ΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π°, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠΈΠΌΠ° Π·Π° изслСдвания Π΄ΠΎΡ€ΠΈ ΠΏΡ€ΠΈ Π½ΠΎΠ²ΠΎΡ€ΠΎΠ΄Π΅Π½ΠΈ

    Jacobi Identity for Vertex Algebras in Higher Dimensions

    Full text link
    Vertex algebras in higher dimensions provide an algebraic framework for investigating axiomatic quantum field theory with global conformal invariance. We develop further the theory of such vertex algebras by introducing formal calculus techniques and investigating the notion of polylocal fields. We derive a Jacobi identity which together with the vacuum axiom can be taken as an equivalent definition of vertex algebra.Comment: 35 pages, references adde

    CELL DEATH DIFFERENTIATION IN BLACK HEADED RAMS SPERMATOZOA, USING FLUORESCENT LABELED ANNEXIN V

    Get PDF
    Double staining kit of Annexin V Cy3.18/6-CFDA was used to investigate the changes in phospholipide asymmetry after treating sperm cells with dexamethasone. The % of spermatozoa with registered translocation of PS in treated with dexamethazone groups at the 10-th min and in control no treated varied from 2.74%Β±0.65 to 2.30%Β±0.89. After the 5 hour of incubation these % increased to 39.83Β±3.33 for the treated group and 23.44Β±1.12 for the control. It was concluded that Annexin V binding assay is more sensitive in the detection of deterioration in membrane function than other conventional methods such as motility analysis and supravital techniques

    Opportunistic screening for hypertension in the general population in Bulgaria: international society of hypertension may measurement month campaign

    Get PDF
    Cardiovascular diseases are not only the leading causes of mortality in Bulgaria but also the mortality rate is twice as high as the European Union average, so screening programmes identifying subjects with elevated blood pressure (BP) are of utmost importance. May Measurement Month (MMM) is an annual global initiative of the International Society of hypertension that began in 2017 aimed at raising awareness of high BP. Bulgaria joined the 3rd campaign of MMM in 2019 and an overview of the results of Bulgarian participation are presented in this paper. Hypertension was defined as systolic BP β‰₯ 140 mm Hg and diastolic BP β‰₯ 90 mm Hg or treatment for hypertension, statistical analysis followed the standard MMM protocol. In Bulgaria, 150 screening points were set up in primary and secondary care facilities, in pharmacies, and outdoor spaces across 21 administrative districts. Out of 3678 individuals screened, 2587 participants (70.3%) had hypertension. Of 2896 participants with hypertension, 35.6% had controlled BP. Out of 1760 participants not on antihypertensive medication, 669 (38%) had elevated BP. In the case of treated individuals (n = 1918), 997 (52%) had uncontrolled hypertension. In the untreated cohort, every 4th subject had elevated BP, whilst among patients on antihypertensive medication, every second had uncontrolled BP, the worst results in terms of diagnosis and treatment are observed in men. By identifying almost two-third of the whole screened cohort with the possibility of newly diagnosed or uncontrolled hypertension, our results confirm the importance of BP screening campaigns

    The 2D/3D Best-Fit Problem

    Get PDF
    In computer systems, the best-fit problem can be described as a search for the best transformation matrix to transform input mea- sured points from their coordinate system into a CAD model coordinate system using a criteria function for optimization. For example, if the criterion is Mini- mum Sum of Deviations, we search for a transformation matrix M that minimizes the sum of all distances from an matrix-transformed measure points to a CAD model

    Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1.

    No full text
    The mitochondrial cytochromecoxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle, in which translation of the COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we have isolated a cytochromecoxidase assembly intermediate in preparatory scale fromcoa1Ξ”mutant cells using Mss51 as a bait. We demonstrate that at this stage of assembly the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we defined the protein composition of the assembly intermediate and unexpectedly identified the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochromecoxidase assembly by stabilizing newly synthesized Cox1
    • …
    corecore