416 research outputs found
Association study of suicidal behavior and affective disorders with a genetic polymorphism in ABCG1, a positional candidate on chromosome 21q22.3
The gene that codes for the ABC transporter ABCG1 is located in a chromosomal susceptibility region (21q22.3) for affective disorders. Genetic variations in ABCG1 have been associated with affective disorders in Japanese males. In this study, we investigated the distribution of a G2457A polymorphism in patients with affective disorders, suicide attempters with various psychiatric diagnoses and healthy subjects, We initially found a trend towards a modest association with affective disorders in males (p = 0.046 for allele frequencies and p = 0.046 for AA versus GG). We conducted a replication study with independent patients and controls, There was no association with affective disorders, either in the replication or in the combined group, Furthermore, we found no association with suicidal behavior, These findings do not support the hypothesis that ABCG1 is a susceptibility gene for affective disorders or suicidal behavior. Copyright (C) 2000 S. Karger AG, Basel
No association of a set of candidate genes on haloperidol side effects
We previously investigated a sample of patients during an active phase of psychosis in the search for genetic predictors of haloperidol induced side effects. In the present work we extend the genetic association analysis to a wider panel of genetic variations, including 508 variations located in 96 genes. The original sample included 96 patients. An independent group of 357 patients from the CATIE study served as a replication sample. Outcomes in the investigation sample were the variation through time of: 1) the ESRS and UKU total scores 2) ESRS and UKU subscales (neurologic and psychic were included) related to tremors and 3) ESRS and UKU subscales that do not relate to tremors. Outcome in the replication sample was the presence vs absence of motoric side effects from baseline to visit 1 ( 3c one month of treatment) as assessed by the AIMS scale test. Rs2242480 located in the CYP3A4 was associated with a different distribution of the UKU neurologic scores through time (permutated p\u200a=\u200a0.047) along with a trend for a different haloperidol plasma levels (lower in CC subjects). This finding was not replicated in the CATIE sample. In conclusion, we did not find conclusive evidence for a major association between the investigated variations and haloperidol induced motoric side effect
Mild expression differences of MECP2 influencing aggressive social behavior
The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (∼50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3′UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2mRNA expression differs in peripheral blood mononuclear cells by ∼50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3′UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior
Contribution of Rare and Potentially Functionally Relevant Sequence Variants in Schizophrenia Risk‐Locus Xq28,distal
Duplications of the Xq28,distal locus have been described in male and female patients with schizophrenia (SCZ) or intellectual disability. The Xq28,distal locus spans eight protein-coding genes (F8, CMC4, MTCP1, BRCC3, VBP1, FUNDC2, CLIC2, and RAB39B) and is flanked by recurrent genomic breakpoints. Thus, the issue of which gene/s at this locus is/are relevant in terms of SCZ pathogenesis remains unclear. The aim of this study was to investigate the contribution of rare and potentially functionally relevant sequence variants within the Xq28,distal locus to SCZ risk using the single-molecule molecular inversion probes (smMIP) method. Targeted sequencing was performed in a cohort of 1935 patients with SCZ and 1905 controls of European ancestry. The consecutive statistical analysis addressed two main areas. On the level of the individual variants, allele counts in the patient and control cohort were systematically compared with a Fisher's exact test: (i) for the entire present study cohort; (ii) for patients and controls separated by sex; and (iii) in combination with data published by the Schizophrenia Exome Meta-Analysis (SCHEMA) consortium. On the gene-wise level, a burden analysis was performed using the X-chromosomal model of the Optimal Unified Sequence Kernel Association Test (SKAT-O), with adjustment for possible sex-specific effects. Targeted sequencing identified a total of 13 rare and potentially functional variants in four patients and 11 controls. However, neither at the level of individual rare and potentially functional variants nor at the level of the eight protein-coding genes at the Xq28,distal locus was a statistically significant enrichment in patients compared to controls observed. Although inconclusive, the present findings represent a step toward improved understanding of the contribution of X-chromosomal risk factors in neuropsychiatric disorder development, which is an underrepresented aspect of genetic studies in this field
- …