2,797 research outputs found

    Interferon-b Modulates Inflammatory Response in Cerebral Ischemia

    Get PDF
    BACKGROUND: Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon-β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis for more than a decade. Its anti-inflammatory properties and well-characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke. METHODS AND RESULTS: We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4(+) T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain. CONCLUSIONS: Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti-inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator

    Love Postoperative ECG Shell (I)

    Get PDF
    Ongoing cutting-edge multidisciplinary research in textile fibers, biomedical sensors, and wireless and mobile telecommunications integrated with telemedicine, aims at developing intelligent biomedical clothing (IBC). This ECG shell design is a functional garment offering, health benefits, improved appearance and increased comfort. The garment is more comfortable because the high adhesive factor of current commercial hydrogel used in ECG monitoring causes patients skin allergies and pruritus from wearing the hydrogel for a long time

    Love Postoperative ECG T-shirt (II)

    Get PDF
    This ECG T-shirt is a functional garment offering, health benefits, improved appearance and increased comfort. The garment is more comfortable because the high adhesive factor of current commercial hydrogel used in ECG monitoring causes patients skin allergies and pruritus from wearing the hydrogel for a long time. Additionally, since the sensors are attached to the lining of this two-layer raglan T-shirt, the exterior is smooth and makes the user tracking device inconspicuous

    Substance P scavenger enhances antioxidant defenses and prevents prothrombotic effects on the rat lung after acute exposure to oil smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Airborne particulate matter, from cooking oil, smoking, engine exhaust and other sources, is associated with the development of atherosclerosis and myocardial infarction. In order to explore the cellular and molecular events following exposure of rats to lard oil smoke, we measured the generation of reactive oxygen species (ROS), substance P, cellular adhesion molecules, and thrombosis in relation to inhibitors of substance P, the NK-1 receptor, and antioxidants.</p> <p>Methods</p> <p>Rats were exposed to oil smoke for 120 min with or without 20 min pretreatment with lovastatin (substance P scavenger), L733060 (NK-1 receptor antagonist), vitamin E (antioxidant) or catechins (antioxidant). The levels of substance P and ROS were measured. Histological studies observed ROS damage in the form of HEL adducts. The prothrombotic effects of oil smoke exposure were measured by experimental induction of thrombosis in vivo.</p> <p>Results</p> <p>Oil smoke exposure significantly increased substance P levels, ROS levels, ROS damage (HEL adduct levels), and the size of experimentally induced thrombi. The pretreatments reduced all of these effects of oil smoke exposure; at many time points the reductions were statistically significant.</p> <p>Conclusion</p> <p>We established a connection between oil smoke exposure and thrombosis which involves substance P and its receptor, the NK-1 receptor, and ROS. This study helps establish a mechanistic explanation of how airborne particulate matter can increase the risk of cardiovascular illness.</p

    Isolation of Mouse Cerebral Microvasculature for Molecular and Single-Cell Analysis

    Get PDF
    Brain microvasculature forms a specialized structure, the blood-brain barrier (BBB), to maintain homeostasis and integrity of the central nervous system (CNS). The BBB dysfunction is emerging as a critical contributor to multiple neurological disorders, including stroke, traumatic brain injury, autoimmune multiple sclerosis, and neurodegenerative diseases. The brain microvasculature exhibits highly cellular and regional heterogeneity to accommodate dynamic changes of microenvironment during homeostasis and diseases. Thus, investigating the underlying mechanisms that contribute to molecular or cellular changes of the BBB is a significant challenge. Here, we describe an optimized protocol to purify microvessels from the mouse cerebral cortex using mechanical homogenization and density-gradient centrifugation, while maintaining the structural integrity and functional activity of the BBB. We show that the isolated microvessel fragments consist of BBB cell populations, including endothelial cells, astrocyte end-feet, pericytes, as well as tight junction proteins that seal endothelial cells. Furthermore, we describe the procedures to generate single-cell suspensions from isolated microvessel fragments. We demonstrate that cells in the single-cell suspensions are highly viable and suitable for single-cell RNA-sequencing analysis. This protocol does not require transgenic mice and cell sorting equipment to isolate fluorescence-labeled endothelial cells. The optimized procedures can be applied to different disease models to generate viable cells for single-cell analysis to uncover transcriptional or epigenetic landscapes of BBB component cells

    Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations

    Full text link
    We have performed systematic first-principles calculations on di-carbide, -nitride, -oxide and -boride of platinum and osmium with the fluorite structure. It is found that only PtN2_{2}, OsN2_{2} and OsO2_{2} are mechanically stable. In particular OsN2_{2} has the highest bulk modulus of 360.7 GPa. Both the band structure and density of states show that the new phase of OsN2_{2} is metallic. The high bulk modulus is owing to the strong covalent bonding between Os 5\textit{d} and N 2\textit{p} states and the dense packed fluorite structure.Comment: Phys. Rev. B 74,125118 (2006

    Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge

    Get PDF
    BACKGROUND: Systemic inflammation is associated with increased cognitive decline and risk for Alzheimer's disease. Microglia (MG) activated during systemic inflammation can cause exaggerated neuroinflammatory responses and trigger progressive neurodegeneration. Dimethyl fumarate (DMF) is a FDA-approved therapy for multiple sclerosis. The immunomodulatory and anti-oxidant properties of DMF prompted us to investigate whether DMF has translational potential for the treatment of cognitive impairment associated with systemic inflammation. METHODS: Primary murine MG cultures were stimulated with lipopolysaccharide (LPS) in the absence or presence of DMF. MG cultured from nuclear factor (erythroid-derived 2)-like 2-deficient (Nrf2 -/- ) mice were used to examine mechanisms of DMF actions. Conditioned media generated from LPS-primed MG were used to treat hippocampal neuron cultures. Adult C57BL/6 and Nrf2 -/- mice were subjected to peripheral LPS challenge. Acute neuroinflammation, long-term memory function, and reactive astrogliosis were examined to assess therapeutic effects of DMF. RESULTS: DMF suppressed inflammatory activation of MG induced by LPS. DMF suppressed NF-κB activity through Nrf2-depedent and Nrf2-independent mechanisms in MG. DMF treatment reduced MG-mediated toxicity towards neurons. DMF suppressed brain-derived inflammatory cytokines in mice following peripheral LPS challenge. The suppressive effect of DMF on neuroinflammation was blunted in Nrf2 -/- mice. Importantly, DMF treatment alleviated long-term memory deficits and sustained reactive astrogliosis induced by peripheral LPS challenge. DMF might mitigate neurotoxic astrocytes associated with neuroinflammation. CONCLUSIONS: DMF treatment might protect neurons against toxic microenvironments produced by reactive MG and astrocytes associated with systemic inflammation
    corecore