20,877 research outputs found

    Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator

    Get PDF
    We consider a two-component Bose-Einstein condensate in a double-well potential, where the atoms are magnetically coupled to a single-mode of the microwave field inside a superconducting resonator. We find that the system has the different dark-state subspaces in the strong- and weak-tunneling regimes, respectively. In the limit of weak tunnel coupling, steady-state entanglement between the two spatially separated condensates can be generated by evolving to a mixture of dark states via the dissipation of the photon field. We show that the entanglement can be faithfully indicated by an entanglement witness. Long-lived entangled states are useful for quantum information processing with atom-chip devices.Comment: 9 pages, 7 figures, minor revisio

    Divergent nematic susceptibility in an iron arsenide superconductor

    Full text link
    Within the Landau paradigm of continuous phase transitions, ordered states of matter are characterized by a broken symmetry. Although the broken symmetry is usually evident, determining the driving force behind the phase transition is often a more subtle matter due to coupling between otherwise distinct order parameters. In this paper we show how measurement of the divergent nematic susceptibility of an iron pnictide superconductor unambiguously distinguishes an electronic nematic phase transition from a simple ferroelastic distortion. These measurements also reveal an electronic nematic quantum phase transition at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure

    STM imaging of a bound state along a step on the surface of the topological insulator Bi2_2Te3_3

    Full text link
    Detailed study of the LDOS associated with the surface-state-band near a step-edge of the strong topological-insulator Bi2Te3, reveal a one-dimensional bound state that runs parallel to the stepedge and is bound to it at some characteristic distance. This bound state is clearly observed in the bulk gap region, while it becomes entangled with the oscillations of the warped surface band at high energy, and with the valence band states near the Dirac point. Using the full effective Hamiltonian proposed by Zhang et al., we obtain a closed formula for this bound state that fits the data and provide further insight into the general topological properties of the electronic structure of the surface band near strong structural defects.Comment: 5 pages, 4 figure

    Charge dynamics of the spin-density-wave state in BaFe2_2As2_2

    Full text link
    We report on a thorough optical investigation of BaFe2_2As2_2 over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at TSDW=135T_{SDW}=135 K. While BaFe2_2As2_2 remains metallic at all temperatures, we observe a depletion in the far infrared energy interval of the optical conductivity below TSDWT_{SDW}, ascribed to the formation of a pseudogap-like feature in the excitation spectrum. This is accompanied by the narrowing of the Drude term consistent with the dcdc transport results and suggestive of suppression of scattering channels in the SDW state. About 20% of the spectral weight in the far infrared energy interval is affected by the SDW phase transition

    Anisotropic charge dynamics in detwinned Ba(Fe1−x_{1-x}Cox_x)2_2As2_2

    Full text link
    We investigate the optical conductivity as a function of temperature with light polarized along the in-plane orthorhombic aa- and bb-axes of Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 for xx=0 and 2.5%\% under uniaxial pressure. The charge dynamics at low frequencies on these detwinned, single domain compounds tracks the anisotropic dcdc transport properties across their structural and magnetic phase transitions. Our findings allow us to estimate the dichroism, which extends to relatively high frequencies. These results are consistent with a scenario in which orbital order plays a significant role in the tetragonal-to-orthorhombic structural transition

    Coherent control of atomic spin currents in a double well

    Get PDF
    We propose an experimental feasible method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system and show that the directions of spin currents and net-particle tunneling can be manipulated by adiabatically varying the coupling strength between the atoms and the field. This system can be used for studying spin and tunneling phenomena across a wide range of interaction parameters. In addition, spin-squeezed states can be generated. It is useful for quantum information processing and quantum metrology.Comment: 6 pages, 7 figures, minor revisio
    • …
    corecore