695 research outputs found

    Older people’s experiences of living with, responding to and managing sensory loss

    Get PDF
    (1) Background: Ageing is associated with a decline in sensory function (sight, hearing, taste, touch and smell), which play an important role in the maintenance of an older person’s health, independence and well-being. (2) Methods: This qualitative study obtained data through face-to-face semi-structured interviews with a convenience sample of thirteen community-dwelling adults 65 years and older. Themes were derived inductively, guided by semi-structured interviews. (3) Results: Twelve participants had two or more sensory impairments, mainly concurrent hearing and vision, which became apparent when a situation/individual alerted them to change/s occurring. They were less aware of impaired smell, taste and touch. Sensory changes impacted on important life functions, prompting many participants to take measured risks in maintaining their independence. Half (seven) of the participants lacked motivation to manage sensory function through goal-directed behaviour, taking remedial actions only when this was relevant to lifestyle preferences. (4) Con-clusions: Internal and/or external triggers of sensory changes did not generally motivate remedial action. Health professionals can help to improve older people’s attention to sensory impairment by routinely discussing sensory function with them, screening for sensory changes and facilitating early intervention and support

    Who Are Loyal Customers in Online Games

    Get PDF

    Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen therapy (HBOT) is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS), is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs.</p> <p>Results</p> <p>Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS) was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model.</p> <p>Conclusions</p> <p>The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.</p

    On finite-horizon control of genetic regulatory networks with multiple hard-constraints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Probabilistic Boolean Networks (PBNs) provide a convenient tool for studying genetic regulatory networks. There are three major approaches to develop intervention strategies: (1) resetting the state of the PBN to a desirable initial state and letting the network evolve from there, (2) changing the steady-state behavior of the genetic network by minimally altering the rule-based structure and (3) manipulating external control variables which alter the transition probabilities of the network and therefore desirably affects the dynamic evolution. Many literatures study various types of external control problems, with a common drawback of ignoring the number of times that external control(s) can be applied.</p> <p>Results</p> <p>This paper studies the intervention problem by manipulating multiple external controls in a finite time interval in a PBN. The maximum numbers of times that each control method can be applied are given. We treat the problem as an optimization problem with multi-constraints. Here we introduce an algorithm, the "Reserving Place Algorithm'', to find all optimal intervention strategies. Given a fixed number of times that a certain control method is applied, the algorithm can provide all the sub-optimal control policies. Theoretical analysis for the upper bound of the computational cost is also given. We also develop a heuristic algorithm based on Genetic Algorithm, to find the possible optimal intervention strategy for networks of large size. </p> <p>Conclusions</p> <p>Studying the finite-horizon control problem with multiple hard-constraints is meaningful. The problem proposed is NP-hard. The Reserving Place Algorithm can provide more than one optimal intervention strategies if there are. Moreover, the algorithm can find all the sub-optimal control strategies corresponding to the number of times that certain control method is conducted. To speed up the computational time, a heuristic algorithm based on Genetic Algorithm is proposed for genetic networks of large size.</p

    Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells.

    Get PDF
    FUT1 and FUT2 encode alpha 1, 2-fucosyltransferases which catalyze the addition of alpha 1, 2-linked fucose to glycans. Glycan products of FUT1 and FUT2, such as Globo H and Lewis Y, are highly expressed on malignant tissues, including breast cancer. Herein, we investigated the roles of FUT1 and FUT2 in breast cancer. Silencing of FUT1 or FUT2 by shRNAs inhibited cell proliferation in vitro and tumorigenicity in mice. This was associated with diminished properties of cancer stem cell (CSC), including mammosphere formation and CSC marker both in vitro and in xenografts. Silencing of FUT2, but not FUT1, significantly changed the cuboidal morphology to dense clusters of small and round cells with reduced adhesion to polystyrene and extracellular matrix, including laminin, fibronectin and collagen. Silencing of FUT1 or FUT2 suppressed cell migration in wound healing assay, whereas FUT1 and FUT2 overexpression increased cell migration and invasion in vitro and metastasis of breast cancer in vivo. A decrease in mesenchymal like markers such as fibronectin, vimentin, and twist, along with increased epithelial like marker, E-cadherin, was observed upon FUT1/2 knockdown, while the opposite was noted by overexpression of FUT1 or FUT2. As expected, FUT1 or FUT2 knockdown reduced Globo H, whereas FUT1 or FUT2 overexpression showed contrary effects. Exogenous addition of Globo H-ceramide reversed the suppression of cell migration by FUT1 knockdown but not the inhibition of cell adhesion by FUT2 silencing, suggesting that at least part of the effects of FUT1/2 knockdown were mediated by Globo H. Our results imply that FUT1 and FUT2 play important roles in regulating growth, adhesion, migration and CSC properties of breast cancer, and may serve as therapeutic targets for breast cancer

    Critical quality attributes (CQAs) of a therapeutic antibody produced from integrated continuous bioprocessing

    Get PDF
    The integrated continuous bioprocess provides an innovative way to produce protein drugs with flexibility and efficiency. However, during the long-term cultivation and complicated production, how to ensure the process stability and product quality is critically important. In this study, the monoclonal antibody (mAb) was produced in a bioreactor operated in a perfusion mode utilizing the ATF cell retention system for up to 32 days. The 2L harvest per day starting at day 10 was continuously purified using the 3-column periodic counter-current (PCC) chromatography system. The first protein A capture purification was performed with the dynamic binding capacity of 50% breakthrough around 60 mg mAb/mL of resin (vs 20 mg/mL resin for batch purification) for 120 cycles or 360 column operations followed by a polishing step of mixed mode chromatography for 20 cycles. The process and quality attributes were monitored daily. The results demonstrate consistency in both the purification process and the mAb qualities (in the aspects of product integrity, aggregates, and glycan profile) between PCC and batch purifications. Culture-related charge heterogeneity was observed accompanied by an increase of bioreactor harvest time using both batch and PCC purification processes. In addition, the impurities such as endotoxin and HCP were also monitored while under this high capacity utilization of chromatography resins. By sharing the insights of process and quality attributes, we hope to provide better understanding on the process-related heterogeneity between batch and continuous production and/or purification

    Periodic counter-current chromatography for continuous purification of monoclonal antibody

    Get PDF
    Integrated and continuous processing of antibody drugs offers several advantages over traditional batch processing in the biotechnology industry. The flexibility of periodic counter-current (PCC) design is performed in the selection of residence time and column numbers on the capture process. In this study, we investigate the association of residence time and product recovery in the downstream PCC purification. A practical operation of PCC as a continuous capture purification step has been applied to 50L feed-bath culture, 5L perfusion culture and 5L concentrated feed-batch culture. Protein breakthrough curve was determined for the appropriate column switching strategy. Using an empirical model for the protein breakthrough curve, residence time (RT) was evaluated and the loading flow rate was adjusted to achieve a target RT of 2.25 minutes for monoclonal antibody (mAb). The sample load volume for each column switching was set on 50-58% breakthrough curves, mAb recovery was 83-92%, and buffer consumption was decreased to under half that of the batch process. Overall, 1.0 to 1.5 gram mAb was obtained for per milliliter resin in 24 hours using a PCC purification system. We used size exclusion-high performance liquid chromatography to confirm composition and masses of our fragment samples. Comparison of qualities of mAb analyzed by UPLC and reverse phase chromatography show that glycan profiles and purity are quite similar between PCC and Avant purification, whereas that for acidic variants are different, the acidic variants of mAb purified by PCC is higher than that purified by Avant. The advantages of a continuous downstream capture step are highlighted for our case study in comparison with the existing batch chromatography processes. The use of PCC improves the higher resin capacity utilization and lower buffer consumption

    Slow conduction and gap junction remodeling in murine ventricle after chronic alcohol ingestion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term heavy alcohol drinkers are prone to the development of cardiac arrhythmia. To understand the mechanisms, we evaluated the cardiac structural and electrophysiological changes in mice chronically drinking excessive alcohol.</p> <p>Results</p> <p>Male C57BL/6J mice were given 36% alcohol in the drinking water. Those given blank water were used as control. Twelve weeks later, the phenotypic characteristics of the heart, including gap junctions and electrical properties were examined. In the alcohol group the ventricles contained a smaller size of cardiomyocytes and a higher density of capillary networks, compared to the control. Western blots showed that, after drinking alcohol, the content of connexin43 (Cx43) protein in the left ventricle was increased by 18% (p < 0.05). Consistently, immunoconfocal microscopy demonstrated that Cx43 gap junctions were up-regulated in the alcohol group with a disorganized distribution, compared to the control. Optical mapping showed that the alcohol group had a reduced conduction velocity (40 ± 18 vs 60 ± 7 cm/sec, p < 0.05) and a higher incidence of ventricular tachyarrhythmia (62% vs 30%, p < 0.05).</p> <p>Conclusion</p> <p>Long-term excessive alcohol intake resulted in extensive cardiac remodeling, including changes in expression and distribution of gap junctions, growth of capillary network, reduction of cardiomyocyte size, and decrease of myocardial conduction.</p

    Distinct Gene Expression Profiles in Immortalized Human Urothelial Cells Exposed to Inorganic Arsenite and Its Methylated Trivalent Metabolites

    Get PDF
    Inorganic arsenic is an environmental carcinogen. The generation of toxic trivalent methylated metabolites complicates the study of arsenic-mediated carcinogenesis. This study systematically evaluated the effect of chronic treatment with sodium arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), and dimethylarsinous acid (DMA(III)) on immortalized human uroepithelial cells (SV-HUC-1 cells) using cDNA microarray. After exposure for 25 passages to iAs(III) (0.5 μM), MMA(III) (0.05, 0.1, or 0.2 μM), or DMA(III) (0.2 or 0.5 μM), significant compound-specific morphologic changes were observed. A set of 114 genes (5.7% of the examined genes) was differentially expressed in one or more sets of arsenical-treated cells compared with untreated controls. Expression analysis showed that exposure of cells to DMA(III) resulted in a gene profile different from that in cells exposed to iAs(III) or MMA(III), and that the iAs(III)-induced gene profile was closest to that in the tumorigenic HUC-1–derived 3-methylcholanthrene–induced tumorigenic cell line MC-SV-HUC T2, which was derived from SV-HUC-1 cells by methylcholanthrene treatment. Of the genes affected by all three arsenicals, only one, that coding for interleukin-1 receptor, type II, showed enhanced expression, a finding confirmed by the reduced increase in NF-κB (nuclear factor kappa B) activity seen in response to interleukin-1β in iAs(III)-exposed cells. The expression of 11 genes was suppressed by all three arsenicals. 5-Aza-deoxycytidine partially restored the transcription of several suppressed genes, showing that epigenetic DNA methylation was probably involved in arsenical-induced gene repression. Our data demonstrate that chronic exposure to iAs(III), MMA(III), or DMA(III) has different epigenetic effects on urothelial cells and represses NF-κB activity
    corecore