4 research outputs found

    In vivo protection against Androctonus australis hector scorpion toxin and venom by immunization with a synthetic analog of toxin II.

    No full text
    International audienceA synthetic peptide mimicking the North African scorpion Androctonus australis hector toxin II was designed and produced by chemical solid-phase synthesis. It contains the entire sequence of toxin II (64 amino acid residues), with each half-cystine being replaced by the isosteric residue a-aminobutyric acid, and was thus devoid of disulfide bridges. This construct was totally nontoxic in mice even if large amounts, equivalent to 1000 times the LD50 of the original toxin, were injected by the intracerebroventricular route. The synthetic peptide, either as a monomer or polymerized by means of glutaraldehyde, induced the production of antitoxin neutralizing antibodies in immunized mice and rabbits. After three injections with either the monomeric or polymerized synthetic peptide, the immunized mice were protected against several lethal doses of the corresponding native toxin or scorpion venom. Six months after immunization, the mice were completely protected against challenge with eight LD50 of the original toxin. The protection was better when the polymerized synthetic peptide was used. One month after the start of the immunization program, it showed a good correlation between antibody titer and protection. However, antibody titer decreased with time but protection remained high. This suggests that additional factors other than circulating antibodies play a role in protective activity

    A recombinant insect-specific alpha-toxin of Buthus occitanus tunetanus scorpion confers protection against homologous mammal toxins.

    No full text
    International audienceWe have constructed a cDNA library from venom glands of the scorpion Buthus occitanus tunetanus and cloned a DNA sequence that encodes an alpha-toxin. This clone was efficiently expressed in Escherichia coli as a fusion protein with two Ig-binding (Z) domains of protein A from Staphylococcus aureus. After CNBr treatment of the fusion protein and HPLC purification, we obtained approximately 1 mg recombinant apha-toxin/l bacterial culture. The toxin, called Bot XIV, displays no toxicity towards mammals but is active towards insects as shown by its paralytic activity against Blatella germanica cockroach and by electrophysiological studies on Periplaneta americana cockroaches. The Bot XIV protein fused to two Z domains is highly immunogenic in mice and induces production of antisera that specifically recognize and neutralize highly toxic components that had been injected into mice. This fusion protein could be very useful for development of potent protective antisera against scorpion venoms
    corecore