1,690 research outputs found

    The Twin Astrographic Catalog (TAC) Version 1.0

    Get PDF
    A first version of the Twin Astrographic Catalog (TAC) of positions for 705,679 stars within −18∘≤δ≤90∘-18^{\circ} \le \delta \le 90^{\circ} has been produced. The sky coverage of the TAC is complete to over 90\% in that area. The limiting magnitude is about B=11.5. Positions are based on 49124912 plates taken with the U.S. Naval Observatory Twin Astrograph (blue, yellow lens) at epochs 1977--1986. The TAC is supplemented by proper motions which are obtained from a combination with a re--reduced Astrographic Catalog (AC). Some AC zones are available now and a complete northern hemisphere is expected by fall 1996. Proper motions of almost all TAC stars will be generated as the AC work progresses. The average precision of a catalog position is 90 mas per coordinate at epoch of observation. A large fraction of that error is introduced by the currently available reference stars. The inherent precision of the TAC data is considerably better. The precision of the proper motions is currently 2.5 to 4 mas/yr. Magnitude--dependent systematic errors have been found and preliminarily corrected. The final reduction of this plate material will be performed with the Hipparcos catalog in 1997. The TAC is about 3 times more precise than the PPM or ACRS in the northern hemisphere at current epochs and contains about 3 times more stars. The TAC has a higher star density than the Tycho catalog and provides independent, high precision positions for a large fraction of the Tycho stars at an epoch about 10 years earlier than the Tycho mean epoch. The TAC version 1.0 data are released as the AC zones become available. For latest information, look at the US Naval Observatory World Wide Web page http://aries.usno.navy.mil/ad/tac.html.Comment: 22 pages LaTex, accepted by AJ, scheduled for Nov., no figures provided, needs aasms4.st

    Verification of seiching processes in a large and deep lake (Trichonis, Greece)

    Get PDF
    A computational analysis of the periods and structure of surface seiches of Lake Trichonis in Greece and its experimental verification from three simultaneous water gauge recordings, mounted along the shores in Myrtia, Panetolio and Trichonio is given. The first five theoretical modes are calculated with a finite difference code of tidal equations, which yield the eigenperiodes, co-range and co-tidal lines that are graphically displayed and discussed in detail.Experimental verifications are from recordings taken during spring. Visual observations of the record permit identification of the five lowest order modes, including inter station phase shift. Power spectral analysis of two time series and interstation phase difference and coherence spectra allow the identification of the same five modes. Agreement between the theoretically predicted and the experimentally determined periods was excellent for most of the calculated modes

    Comparing Tycho-2 Astrometry with UCAC1

    Get PDF
    The Tycho-2 Catalogue, released in February 2000, is based on the ESA Hipparcos space mission data and various ground-based catalogs for proper motions. An external comparison of the Tycho-2 astrometry is presented here using the first U.S. Naval Observatory CCD Astrograph Catalog (UCAC1). The UCAC1 data were obtained from observations performed at CTIO between February 1998 and November 1999, using the 206 mm aperture 5-element lens astrograph and a 4k x 4k CCD. Only small systematic differences in position between Tycho-2 and UCAC1 up to 15 milliarcseconds (mas) are found, mainly as a function of magnitude. The standard deviations of the distributions of the position differences are in the 35 to 140 mas range, depending on magnitude. The observed scatter in the position differences is about 30% larger than expected from the combined formal, internal errors, also depending on magnitude. The Tycho-2 Catalogue has the more precise positions for bright stars (V <= 10 mag) while the UCAC1 positions are significantly better at the faint end (11 mag <= V <= 12.5 mag) of the magnitude range in common. UCAC1 goes much fainter (to R=16) than Tycho-2; however complete sky coverage is not expected before mid 2003.Comment: LaTeX, 8 pages, 3 PS figures, accepted by AJ (Aug 2000) see also http://ad.usno.navy.mil/ad/ucac/ request for UCAC1 CD-ROM: e-mail to [email protected] request for Tycho-2 CD-ROM: e-mail to [email protected] or [email protected]

    The second US Naval Observatory CCD Astrograph Catalog (UCAC2)

    Full text link
    The second USNO CCD Astrograph Catalog, UCAC2 was released in July 2003. Positions and proper motions for 48,330,571 sources (mostly stars) are available on 3 CDs, supplemented with 2MASS photometry for 99.5% of the sources. The catalog covers the sky area from -90 to +40 degrees declination, going up to +52 in some areas; this completely supersedes the UCAC1 released in 2001. Current epoch positions are obtained from observations with the USNO 8-inch Twin Astrograph equipped with a 4k CCD camera. The precision of the positions are 15 to 70 mas, depending on magnitude, with estimated systematic errors of 10 mas or below. Proper motions are derived by utilizing over 140 ground-and space-based catalogs, including Hipparcos/Tycho, the AC2000.2, as well as yet unpublished re-measures of the AGK2 plates and scans from the NPM and SPM plates. Proper motion errors are about 1 to 3 mas/yr for stars to 12th magnitude, and about 4 to 7 mas/yr for fainter stars to 16th magnitude. The observational data, astrometric reductions, results, and important information for the users of this catalog are presented.Comment: accepted by AJ, AAS LaTeX, 14 figures, 10 table

    Oriented polaritons in strongly-coupled asymmetric double quantum well microcavities

    Full text link
    Replacing independent single quantum wells inside a strongly-coupled semiconductor microcavity with double quantum wells produces a special type of polariton. Using asymmetric double quantum wells in devices processed into mesas allows the alignment of the electron levels to be voltage-tuned. At the resonant electronic tunnelling condition, we demonstrate that `oriented polaritons' are formed, which possess greatly enhanced dipole moments. Since the polariton-polariton scattering rate depends on this dipole moment, such devices could reach polariton lasing, condensation and optical nonlinearities at much lower threshold powers.Comment: 3 figure

    Multiscale quantum criticality: Pomeranchuk instability in isotropic metals

    Full text link
    As a paradigmatic example of multi-scale quantum criticality, we consider the Pomeranchuk instability of an isotropic Fermi liquid in two spatial dimensions, d=2. The corresponding Ginzburg-Landau theory for the quadrupolar fluctuations of the Fermi surface consists of two coupled modes, critical at the same point, and characterized by different dynamical exponents: one being ballistic with dynamical exponent z=2 and the other one is Landau-damped with z=3, thus giving rise to multiple dynamical scales. We find that at temperature T=0, the ballistic mode governs the low-energy structure of the theory as it possesses the smaller effective dimension d+z. Its self-interaction leads to logarithmic singularities, which we treat with the help of the renormalization group. At finite temperature, the coexistence of two different dynamical scales gives rise to a modified quantum-to-classical crossover. It extends over a parametrically large regime with intricate interactions of quantum and classical fluctuations leading to a universal T-dependence of the correlation length independent of the interaction amplitude. The multiple scales are also reflected in the phase diagram and in the critical thermodynamics. In particular, we find that the latter cannot be interpreted in terms of only a single dynamical exponent: whereas, e.g., the critical specific heat is determined by the z=3 mode, the critical compressibility is found to be dominated by the z=2 fluctuations.Comment: 15 pages, 6 figures; (v2) RG implementation with arbitrary dynamical exponent z, discussion on fixed-points adde

    Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics

    Get PDF
    We present the discovery of 2MASS J21321145+1341584AB as a closely separated (0.066") very low-mass field dwarf binary resolved in the near-infrared by the Keck II Telescope using laser guide star adaptive optics. Physical association is deduced from the angular proximity of the components and constraints on their common proper motion. We have obtained a near-infrared spectrum of the binary and find that it is best described by an L5+/-0.5 primary and an L7.5+/-0.5 secondary. Model-dependent masses predict that the two components straddle the hydrogen burning limit threshold with the primary likely stellar and the secondary likely substellar. The properties of this sytem - close projected separation (1.8+/-0.3 AU) and near unity mass ratio - are consistent with previous results for very low-mass field binaries. The relatively short estimated orbital period of this system (~7-12 yr) makes it a good target for dynamical mass measurements. Interestingly, the system's angular separation is the tightest yet for any very low-mass binary published from a ground-based telescope and is the tightest binary discovered with laser guide star adaptive optics to date.Comment: 10 pages, 3 figures; accepted for publication to A

    Development of the opto-mechanical design for ICE-T

    Full text link
    ICE-T (International Concordia Explorer Telescope) is a double 60 cm f/1.1 photometric robotic telescope, on a parallactic mount, which will operate at Dome C, in the long Antarctic night, aiming to investigate exoplanets and activity of the hosting stars. Antarctic Plateau site is well known to be one of the best in the world for observations because of sky transparency in all wavelengths and low scintillation noise. Due to the extremely harsh environmental conditions (the lowest average temperature is -80∘^\circC) the criteria adopted for an optimal design are really challenging. Here we present the strategies we have adopted so far to fulfill the mechanical and optical requirements.Comment: 7 pages, 2 figures, contributed talk at 'An astronomical Observatory at Concordia (Dome C, Antarctica) for the next decade', 11-15 May, Rome (Italy

    A Double-Mode RR Lyrae Star with a Strong Fundamental Mode Component

    Full text link
    NSVS 5222076, a thirteenth magnitude star in the Northern Sky Variability Survey, was identified by Oaster as a possible new double-mode RR Lyrae star. We confirm the double-mode nature of NSVS 5222076, supplementing the survey data with new V band photometry. NSVS 5222076 has a fundamental mode period of 0.4940 day and a first overtone period of 0.3668 day. Its fundamental mode light curve has an amplitude twice as large as that of the first overtone mode, a ratio very rarely seen. Data from the literature are used to discuss the location in the Petersen diagram of double-mode RR Lyrae stars having strong fundamental mode pulsation. Such stars tend to occur toward the short period end of the Petersen diagram, and NSVS 5222976 is no exception to this rule.Comment: 14 pages, 4 figures, To be published in the March, 2006, issue of PAS

    Heat conductivity of DNA double helix

    Full text link
    Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more efficient. Within the proposed model each nucleotide is represented by 6 particles or grains; the grains interact via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains ("beads on a spring") that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of DNA double-helix retained in the proposed model appears to be essential for describing its thermal properties at a single molecule level.Comment: 16 pages, 12 figure
    • …
    corecore