44 research outputs found

    FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis

    Get PDF
    Objective: FUS gene mutations were recently identified in familial amyotrophic lateral sclerosis (ALS). The present studies sought to define the clinical, post-mortem and neurophysiological phenotypes in ALS families with FUS mutations and to determine the frequency of FUS mutations in familial and sporadic ALS. Methods: FUS was screened for mutations in familial and sporadic ALS cases. Clinical, post-mortem and neurophysiological features of large families with FUS mutations are described. Results and conclusions: FUS mutations were evident in 3.2% (4/124) of familial ALS, representing the second most common gene abnormality to be described in familial ALS after SOD1. No mutations were present in 247 sporadic ALS cases. The clinical presentation in 49 affected patients was consistent with a predominantly lower motor neuron disorder, supported by post-mortem findings. Upper motor neuron involvement varied, with Wallerian degeneration of corticospinal tracts present in one post-mortem case but absent in a second case from the same family. Features of cortical hyperexcitability demonstrated upper motor neuron involvement consistent with other forms of familial and sporadic ALS. One case presented with frontotemporal dementia (FTD) indicating that this may be a rare presenting feature in families with FUS mutation. Ubiquitin-positive cytoplasmic skein-like inclusions were present in lower motor neurons, but in contrast to sporadic ALS, no TDP-43 pathology was evident. Mutation-specific clinical features were identified. Patients with a R521C mutation were significantly more likely to develop disease at a younger age, and dropped-head syndrome was a frequent feature. Reduced disease penetrance was evident among most affected families.Ian P Blair, Kelly L Williams, Sadaf T Warraich, Jennifer C Durnall, Annora D Thoeng, Jim Manavis, Peter C Blumbergs, Steve Vucic, Matthew C Kiernan, Garth A Nicholso

    Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Get PDF
    Dendritic cells (DCs) play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM) is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births) provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12) of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs) was significantly reduced (p < 0.001) in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM

    TDP-43 induces p53-mediated cell death of cortical progenitors and immature neurons

    Get PDF
    TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear. Here we addressed the role of TDP-43 during neural development and show that reduced TDP-43 causes defects in neural stem/progenitor cell proliferation but not cell death. However, overexpression of wild type and TDP-43A315T proteins induce p53-dependent apoptosis of neural stem/progenitors and human induced pluripotent cell (iPS)-derived immature cortical neurons. We show that TDP-43 induces expression of the proapoptotic BH3-only genes Bbc3 and Bax, and that p53 inhibition rescues TDP-43 induced cell death of embryonic mouse, and human cortical neurons, including those derived from TDP-43G298S ALS patient iPS cells. Hence, an increase in wild type and mutant TDP-43 induces p53-dependent cell death in neural progenitors developing neurons and this can be rescued. These findings may have important implications for accumulated or mutant TDP-43 induced neurodegenerative diseases

    Ultrasonic stochastic localization of hidden defects in composite materials

    No full text
    The paper presents a non-deterministic technique to localize hidden defects in carbon fiber reinforced plastics, using multimodal probability beliefs developed from ultrasonic signals. This technique estimates the location of hidden defects, utilizing repetitive amplitudes in multiple Ascans collected for a common target. The multimodal beliefs represent probability density estimates of amplitudes in an A-scan, depicting multiple defects. Location of defects is magnified using Bayesian theorem, while reducing uncertainty. The proposed technique proves to be significantly useful for localizing hidden defects in one dimension, compared to conventional techniques. Multiple carbon fiber composite specimens varying in thickness, numbers of plies and lamina layout are inspected. Ultrasonic A-scans, collected from specimens, are processed using the proposed technique, validating its robustness and accuracy. The results of detection and localization of delamination and low profile defects, such as porosity, are presented in this paper

    The peridural membrane of the spine has characteristics of synovium.

    No full text
    The peridural membrane (PDM) is a well-defined structure between dura mater and the wall of the spinal canal. The spine may be viewed as a multi-segmented joint, with the epidural cavity and neural foramina as joint spaces and PDM as synovial lining. The objective of this investigation was to determine if PDM has histological characteristics of synovium. Samples of the PDM of the thoraco-lumbar spine were taken from 23 human cadavers and analyzed with conventional light microscopy and confocal microscopy. Results were compared to reports on similar analyses of synovium in the literature. Histological distribution of areolar, fibrous, and adipose connective tissue in PDM was similar to synovium. The PDM has an intima and sub-intima. No basement membrane was identified. CD68, a marker for macrophage-like-synoviocytes, and CD55, a marker for fibroblast-like synoviocytes, were seen in the lining and sub-lining of the PDM. Multifunctional hyaluronan receptor CD44 and hyaluronic acid synthetase 2 marker HAS2 were abundantly present throughout the membrane. Marked presence of CD44, CD55, and HAS2 in the well-developed tunica muscularis of blood vessels and in the body of the PDM suggests a role in the maintenance and lubrication of the epidural cavity and neural foramina. Presence of CD68, CD55, and CD44 suggests a scavenging function and a role in the inflammatory response to noxious stimuli. Thus, the human PDM has histological and immunohistochemical characteristics of synovium. This suggests that the PDM may be important for the homeostasis of the flexible spine and the neural structures it contains

    The anatomy of the peridural membrane of the human spine.

    No full text
    A peridural membranous layer exists between the bony wall of the spinal canal and the dura mater, but reports on the anatomy of this structure have been inconsistent. The objective of this study is to give a precise description of the peridural membrane (PDM) and to define it unambiguously as a distinct and unique anatomical entity. Thirty-four cadaveric sections of human thoraco-lumbar spines were dissected. On gross examination, the PDM appears as a smooth hollow tube that covers the bony wall of the spinal canal. An evagination of this tube into the neural foramen contains the exiting spinal nerve. The entire epidural venous plexus, including its extension into the neural foramina, is contained in the body of the PDM. Histological examination of the PDM shows a variable distribution of veins arteries, lymphatics, and nerves embedded in a continuous sheath of fibrous, areolar, and adipose tissue. The posterior longitudinal ligament may be considered a dense condensation of fibrous tissue within the membrane. Thus, the PDM is a unique, continuous, and complete anatomical structure. In the spinal canal, the PDM is adjacent to the periosteum. In the neural foramen, suprapedicular PDM and pedicular periosteum separate anatomically to form a suprapedicular compartment, bounded anteriorly by the intervertebral disc and posteriorly by the facet joint. Trauma or degeneration of the disc or facet joint may lead to inflammation and pain sensitization of PDM. This protective mechanism may be of considerable importance for the functioning of the spine under conditions of strain

    Intracerebral Delivery of Brain-Derived Neurotrophic Factor Using HyStem<sup>®</sup>-C Hydrogel Implants Improves Functional Recovery and Reduces Neuroinflammation in a Rat Model of Ischemic Stroke

    Get PDF
    Ischemic stroke is a leading cause of death and disability worldwide. Potential therapeutics aimed at neural repair and functional recovery are limited in their blood-brain barrier permeability and may exert systemic or off-target effects. We examined the effects of brain-derived neurotrophic factor (BDNF), delivered via an extended release HyStem&#174;-C hydrogel implant or vehicle, on sensorimotor function, infarct volume, and neuroinflammation, following permanent distal middle cerebral artery occlusion (dMCAo) in rats. Eight days following dMCAo or sham surgery, treatments were implanted directly into the infarction site. Rats received either vehicle, BDNF-only (0.167 &#181;g/&#181;L), hydrogel-only, hydrogel impregnated with 0.057 &#181;g/&#181;L of BDNF (hydrogel + BDNFLOW), or hydrogel impregnated with 0.167 &#181;g/&#181;L of BDNF (hydrogel + BDNFHIGH). The adhesive removal test (ART) and 28-point Neuroscore (28-PN) were used to evaluate sensorimotor function up to two months post-ischemia. The hydrogel + BDNFHIGH group showed significant improvements on the ART six to eight weeks following treatment and their behavioral performance was consistently greater on the 28-PN. Infarct volume was reduced in rats treated with hydrogel + BDNFHIGH as were levels of microglial, phagocyte, and astrocyte marker immunoexpression in the corpus striatum. These data suggest that targeted intracerebral delivery of BDNF using hydrogels may mitigate ischemic brain injury and restore functional deficits by reducing neuroinflammation

    A Novel TARDBP mutation in an Australian amyotrophic lateral sclerosis kindred

    No full text
    Amyotrophic lateral sclerosis (ALS) is a fatal neuro-degenerative disorder that causes loss of motor neurons. A pathological hallmark of ALS is the presence of ubiquitinated TAR DNA binding protein (TDP-43) inclusions in the cytoplasm of affected cells. Rare pathogenic mutations within the gene TARDBP that encode TDP-43 were recently reported in ALS but their functional consequences are unknown. To further investigate the pathogenic role of TDP-43 in ALS, a mutation analysis of TARDBP was performed in an Australian cohort of 74 sporadic and 30 familial ALS cases. A novel familial ALS mutation in TDP-43 was identified that substitutes a highly conserved residue (G294V) and is predicted to disrupt the glycine rich domain in the C terminus, a region that plays a role in RNA binding and is required for the exon skipping activity of TDP-43.3 page(s
    corecore