3,916 research outputs found

    The Structure on Invariant Measures of C1C^1 generic diffeomorphisms

    Full text link
    Let Λ\Lambda be an isolated non-trival transitive set of a C1C^1 generic diffeomorphism f\in\Diff(M). We show that the space of invariant measures supported on Λ\Lambda coincides with the space of accumulation measures of time averages on one orbit. Moreover, the set of points having this property is residual in Λ\Lambda (which implies the set of irregular+^+ points is also residual in Λ\Lambda). As an application, we show that the non-uniform hyperbolicity of irregular+^+ points in Λ\Lambda with totally 0 measure (resp., the non-uniform hyperbolicity of a generic subset in Λ\Lambda) determines the uniform hyperbolicity of Λ\Lambda

    Higher order contributions to Rashba and Dresselhaus effects

    Full text link
    We have developed a method to systematically compute the form of Rashba- and Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to an arbitrary order in the wavevector k. This is achieved by using the double group representations to construct general symmetry-allowed Hamiltonians with full spin-orbit effects within the tight-binding formalism. We have computed full-zone spin Hamiltonians for [001]-, [110]- and [111]-grown zinc blende heterostructures (D_{2d},C_{4v},C_{2v},C_{3v} point group symmetries), which are commonly used in spintronics. After an expansion of the Hamiltonian up to third order in k, we are able to obtain additional terms not found previously. The present method also provides the matrix elements for bulk zinc blendes (T_d) in the anion/cation and effective bond orbital model (EBOM) basis sets with full spin-orbit effects.Comment: v1: 11 pages, 3 figures, 8 table

    Statistical Inference in a Directed Network Model with Covariates

    Get PDF
    Networks are often characterized by node heterogeneity for which nodes exhibit different degrees of interaction and link homophily for which nodes sharing common features tend to associate with each other. In this paper, we propose a new directed network model to capture the former via node-specific parametrization and the latter by incorporating covariates. In particular, this model quantifies the extent of heterogeneity in terms of outgoingness and incomingness of each node by different parameters, thus allowing the number of heterogeneity parameters to be twice the number of nodes. We study the maximum likelihood estimation of the model and establish the uniform consistency and asymptotic normality of the resulting estimators. Numerical studies demonstrate our theoretical findings and a data analysis confirms the usefulness of our model.Comment: 29 pages. minor revisio

    Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques

    Get PDF
    The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)

    Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques

    Get PDF
    The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet-d-wave superconductor junctions

    Full text link
    The proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet--d-wave superconductor junctions with {110}-oriented interface are studied by solving self-consistently the Bogoliubov-de Gennes equations within an extended Hubbard model. It is found that the proximity induced order parameter oscillates in the ferromagnetic region. The modulation period is shortened with the increased exchange field while the oscillation amplitude is depressed by the interfacial scattering. With the determined superconducting energy gap, a transfer matrix method is proposed to compute the subgap conductance within a scattering approach. Many novel features including the zero-bias conductance dip and splitting are exhibited with appropriate values of the exchange field and interfacial scattering strength. The conductance spectrum can be influenced seriously by the spin-flip interfacial scattering. In addition, a sizable local magnetic moment near the {110}-oriented surface of the d-wave superconductor is discussed.Comment: 10 pages, 16 ps-figures, to appear in Phys. Rev.

    Photochemical Methods for Peptide Macrocylization

    Get PDF
    Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocylization of peptides and small proteins. These constructs benefit from increased stability, structural rigidity, and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, we provide an overview of both the established and emerging methods for photochemical peptide macrocyclization, highlighting both the limitations and opportunities for further innovation in the field

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the t−Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
    • 

    corecore