594 research outputs found

    Determining soil nitrogen (N) processes using enzymology in response to varying N treatments across four diverse Brassica napus (canola) lines

    Get PDF
    Non-Peer ReviewedNitrogen (N) is an important plant nutrient, and it is the primary constituent of plant nucleotides and proteins, but it is usually the most limiting nutrient in the soil. Improving N use efficiency in agricultural crops has become an important goal in sustainable agriculture. Accordingly, understanding enzymes involved in N reactions is increasingly critical as they are important in controlling N in the environment. The objective of this study is to determine N transformation after varying rates of urea fertilizer is applied to a field; and how N transformation may differ between diverse Brassica napus L. (canola) lines. Two diverse B. napus parent lines and two hybrid lines were grown on Dark Brown Chernozemic soil in Saskatchewan, Canada. Root-associated soils were collected from each line at bolting and flowering, and analyzed for urease and ammonium oxidation enzymes, as well, soil nitrate and ammonium content was determined. Both urease and ammonium oxidation enzyme results showed significant differences between B. napus growth stages (bolting and flowering), and N fertilizer rate after mixed effect models were used to analyze the results. We predict that both nitrate-N and ammonium-N will have significant differences between the canola lines and N rate application. Mixed effect analyses will be used to analyze soil nitrate-N and ammonium-N, with regards to canola line differences, and growth stage differences, and N fertilizer rate differences. By characterizing soil N transformations, this research will advance our knowledge in improving N availability for B. napus lines

    Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples

    Get PDF
    Potent PCR inhibitors in blood and soil samples can cause false negative results from PCR-based clinical and forensic tests. We show that the effect of these inhibitors is primarily upon Taq DNA polymerase, since mutational alteration of the polymerase can overcome the inhibition to the extent that no DNA purification is now required. An N-terminal deletion (Klentaq1) is some 10ā€“100-fold inhibition resistant to whole blood compared to full-length, wild-type (w.t.) Taq, which is strongly inhibited by 0.1ā€“1% blood. Further mutations at codon 708, both in Klentaq 1 and Taq, confer enhanced resistance to various inhibitors of PCR reactions, including whole blood, plasma, hemoglobin, lactoferrin, serum IgG, soil extracts and humic acid, as well as high concentrations of intercalating dyes. Blood PCR inhibitors can predominantly reduce the DNA extension speed of the w.t. Taq polymerase as compared to the mutant enzymes. Single-copy human genomic targets are readily amplified from whole blood or crude soil extract, without pretreatment to purify the template DNA, and the allowed increase in dye concentration overcomes fluorescence background and quenching in real-time PCR of blood

    Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins

    Get PDF
    Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis

    Stakeholder narratives on trypanosomiasis, their effect on policy and the scope for One Health

    Get PDF
    Background This paper explores the framings of trypanosomiasis, a widespread and potentially fatal zoonotic disease transmitted by tsetse flies (Glossina species) affecting both humans and livestock. This is a country case study focusing on the political economy of knowledge in Zambia. It is a pertinent time to examine this issue as human population growth and other factors have led to migration into tsetse-inhabited areas with little historical influence from livestock. Disease transmission in new human-wildlife interfaces such as these is a greater risk, and opinions on the best way to manage this are deeply divided. Methods A qualitative case study method was used to examine the narratives on trypanosomiasis in the Zambian policy context through a series of key informant interviews. Interviewees included key actors from international organisations, research organisations and local activists from a variety of perspectives acknowledging the need to explore the relationships between the human, animal and environmental sectors. Principal Findings Diverse framings are held by key actors looking from, variously, the perspectives of wildlife and environmental protection, agricultural development, poverty alleviation, and veterinary and public health. From these viewpoints, four narratives about trypanosomiasis policy were identified, focused around four different beliefs: that trypanosomiasis is protecting the environment, is causing poverty, is not a major problem, and finally, that it is a Zambian rather than international issue to contend with. Within these narratives there are also conflicting views on the best control methods to use and different reasoning behind the pathways of response. These are based on apparently incompatible priorities of people, land, animals, the economy and the environment. The extent to which a One Health approach has been embraced and the potential usefulness of this as a way of reconciling the aims of these framings and narratives is considered throughout the paper. Conclusions/Significance While there has historically been a lack of One Health working in this context, the complex, interacting factors that impact the disease show the need for cross-sector, interdisciplinary decision making to stop rival narratives leading to competing actions. Additional recommendations include implementing: surveillance to assess under-reporting of disease and consequential under-estimation of disease risk; evidence-based decision making; increased and structurally managed funding across countries; and focus on interactions between disease drivers, disease incidence at the community level, and poverty and equity impacts
    • ā€¦
    corecore