115 research outputs found

    Microbial and Geochemical Evidence of Permafrost Formation at Mamontova Gora and Syrdakh, Central Yakutia

    Get PDF
    Biotracers marking the geologic history and permafrost evolution in Central Yakutia, including Yedoma Ice Complex (IC) deposits, were identified in a multiproxy analysis of water chemistry, isotopic signatures, and microbial datasets. The key study sections were the Mamontova Gora and Syrdakh exposures, well covered in the literature. In the Mamontova Gora section, two distinct IC strata with massive ice wedges were described and sampled, the upper and lower IC strata, while previously published studies focused only on the lower IC horizon. Our results suggest that these two IC horizons differ in water origin of wedge ice and in their cryogenic evolution, evidenced by the differences in their chemistry, water isotopic signatures and the microbial community compositions. Microbial community similarity between ground ice and host deposits is shown to be a proxy for syngenetic deposition and freezing. High community similarity indicates syngenetic formation of ice wedges and host deposits of the lower IC horizon at the Mamontova Gora exposure. The upper IC horizon in this exposure has much lower similarity metrics between ice wedge and host sediments, and we suggest epigenetic ice wedge development in this stratum. We found a certain correspondence between the water origin and the degree of evaporative transformation in ice wedges and the microbial community composition, notably, the presence of Chloroflexia bacteria, represented by Gitt-GS-136 and KD4-96 classes. These bacteria are absent at the ice wedges of lower IC stratum at Mamontova Gora originating from snowmelt, but are abundant in the Syrdakh ice wedges, where the meltwater underwent evaporative isotopical fractionation. Minor evaporative transformation of water in the upper IC horizon of Mamontova Gora, whose ice wedges formed by meltwater that was additionally fractionated corresponds with moderate abundance of these classes in its bacterial community. © Copyright © 2021 Cherbunina, Karaevskaya, Vasil’chuk, Tananaev, Shmelev, Budantseva, Merkel, Rakitin, Mardanov, Brouchkov and Bulat.We thank Samsonova Vera, Karzhavin Vladimir, Pankov Alexander, Andreevskaya Maya and Alexander Osipov for their for their invaluable assistance in field work

    New data on the chemistry of some of the rare elements

    No full text

    Revising contemporary heat flux estimates for the Lena River, Northern Eurasia

    No full text
    The Lena River (Lena R.) heat flux affects the Laptev Sea hydrology. Published long-term estimates range from 14.0 to 15.7 EJ·a−1, based on data from Kyusyur, at the river outlet. A novel daily stream temperature (Tw) dataset was used to evaluate contemporary Lena R. heat flux, which is 16.4 ± 2.7 EJ·a−1 (2002–2011), confirming upward trends in both Tw and water runoff. Our field data from Kyusyur, however, reveal a significant negative bias, −0.8 °C in our observations, in observed Tw values from Kyusyur compared to the cross-section average Tw. Minor Lena R. tributaries discharge colder water during July–September, forming a cold jet affecting Kyusyur Tw data. Major Tw negative peaks mostly coincide with flood peaks on the Yeremeyka River, one of these tributaries. This negative bias was accounted for in our reassessment. Revised contemporary Lena R. heat flux is 17.6 ± 2.8 EJ·a−1 (2002–2011) and is constrained from above at 26.9 EJ·a−1 using data from Zhigansk, approximately 500 km upstream Kyusyur. Heat flux is controlled by stream temperature in June, during the freshet period, while from late July to mid-September, water runoff is a dominant factor

    Mixed ferrocyanides of indium with rubidium and cesium

    No full text

    Kieselsäurebestimmung mittels einfacher Titration

    No full text
    corecore