1,484 research outputs found

    The dominant X-ray wind in massive star binaries

    Full text link
    We investigate which shocked wind is responsible for the majority of the X-ray emission in colliding wind binaries, an issue where there is some confusion in the literature, and which we show is more complicated than has been assumed. We find that where both winds rapidly cool (typically close binaries), the ratio of the wind speeds is often more important than the momentum ratio, because it controls the energy flux ratio, and the faster wind is generally the dominant emitter. When both winds are largely adiabatic (typically long-period binaries), the slower and denser wind will cool faster and the stronger wind generally dominates the X-ray luminosity.Comment: 4 pages, 1 figure, accepted by A&A Letter

    Precursors of gamma-ray bursts: a clue to the burster's nature

    Get PDF
    In relativistic strongly magnetized winds outflowing from the fast-rotating compact progenitors of gamma-ray bursts (GRBs) there are three regions where powerful high-frequency emission may be generated: (i) the thermal photosphere, (ii) the region of the internal wind instability and (iii) the region of the wind interaction with an ambient gas. This results in a multicomponent structure of GRBs. The emission from the thermal photosphere may be observed as a weak precursor to the main burst. The precursor should have a blackbody-like spectrum with the mean energy of photons of ∼1\sim 1 MeV, and its intensity should be tens to hundreds of times smaller than that of the main GRB emission. Observations of such precursors with future γ\gamma-ray missions like GLAST can clarify the nature of bursters.Comment: 5 pages, 3 postscript figures, submitted to ApJ Let

    Drifting subpulses and inner acceleration regions in radio pulsars

    Full text link
    The classical vacuum gap model of Ruderman & Sutherland, in which spark-associated subbeams of subpulse emission circulate around the magnetic axis due to the EB drift, provides a natural and plausible physical mechanism of the subpulse drift phenomenon. Recent progress in the analysis of drifting subpulses in pulsars has provided a strong support to this model by revealing a number of subbeams circulating around the magnetic axis in a manner compatible with theoretical predictions. However, a more detailed analysis revealed that the circulation speed in a pure vacuum gap is too high when compared with observations. Moreover, some pulsars demonstrate significant time variations of the drift rate, including a change of the apparent drift direction, which is obviously inconsistent with the EB drift scenario in a pure vacuum gap. We resolved these discrepancies by considering a partial flow of iron ions from the positively charged polar cap, coexisting with the production of outflowing electron-positron plasmas. By fitting the observationally deduced drift-rates to the theoretical values, we managed to estimate polar cap surface temperatures in a number of pulsars. The estimated surface temperatures correspond to a small charge depletion of the order of a few percent of the corotational charge density. We also argue that if the thermionic electron outflow from the surface of a negatively charged polar cap is slightly below the Goldreich-Julian density, then the resulting small charge depletion will have similar consequences as in the case of the ions outflow. We thus believe that the sparking discharge of a partially shielded acceleration potential drop occurs in all pulsars, with both positively (``pulsars'') and negatively (``anti-pulsars'') charged polar caps

    Real and virtual photons in an external constant electromagnetic field of most general form

    Full text link
    The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item

    Yet Another Model of Gamma-Ray Bursts

    Get PDF
    Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.Comment: 21pp, latex, uses aaspp4.st
    • …
    corecore