31 research outputs found

    Mn induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects

    Full text link
    Using synchrotron based photoemission, we have investigated the Mn-induced changes in Ga 3d core level spectra from as-grown Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_{x}{\rm As}. Although Mn is located in Ga substitutional sites, and does therefore not have any Ga nearest neighbours, the impact of Mn on the Ga core level spectra is pronounced even at Mn concentrations in the range of 0.5%. The analysis shows that each Mn atom affects a volume corresponding to a sphere with around 1.4 nm diameter.Comment: Submitted to Physical Review B, Brief Repor

    Formation of Epitaxial MnBi Layers on (Ga,Mn)As

    Get PDF
    The initial growth of MnBi on MnAs terminated (GaMn)As is studied by means of synchrotron based photoelectron spectroscopy. From analysis of surface core level shifts we conclude that a continued epitaxial MnBi layer is formed, in which the MnAs/MnBi interface occurs between As and Bi atomic planes. The well defined 1x2 surface reconstruction of the MnAs surface in preserved for up to 2 ML of MnBi before clear surface degradation occurs.Comment: 18 pages, 5 figure

    Phenotypic Plasticity and Effects of Selection on Cell Division Symmetry in Escherichia coli

    Get PDF
    Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic) environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment

    Selective Menin Deletion in the Hippocampal CA1 Region Leads to Disruption of Contextual Memory in the MEN1 Conditional Knockout Mouse: Behavioral Restoration and Gain of Function following the Reintroduction of MEN1 Gene

    No full text
    Cholinergic neuronal networks in the hippocampus play a key role in the regulation of learning and memory in mammals. Perturbations of these networks, in turn, underlie neurodegenerative diseases. However, the mechanisms remain largely undefined. We have recently demonstrated that an in vitro MEN1 gene deletion perturbs nicotinic cholinergic plasticity at the hippocampal glutamatergic synapses. Furthermore, MEN1 neuronal conditional knockout in freely behaving animals has also been shown to result in learning and memory deficits, though the evidence remains equivocal. In this study, using an AVV viral vector transcription approach, we provide direct evidence that MEN1 gene deletion in the CA1 region of the hippocampus indeed leads to contextual fear conditioning deficits in conditional knockout animals. This loss of function was, however, recovered when the same animals were re-injected to overexpress MEN1. This study provides the first direct evidence for the sufficiency and necessity of MEN1 in fear conditioning, and further endorses the role of menin in the regulation of cholinergic synaptic machinery in the hippocampus. These data underscore the importance of further exploring and revisiting the cholinergic hypothesis that underlies neurodegenerative diseases that affect learning and memory

    Electron spectroscopic studies of nanowires formed by (GaMn)As growth on GaAs(111)B

    No full text
    Valence band photoemission with photon energies around the Mn2p excitation threshold has been used to study the development of nanowires catalyzed by MnAs particles. A gradual change in the spectra with increasing nanowire length is observed, such that the resonant photoemission eventually dominates over the Auger decay channel. The change is ascribed to dilution of Mn, showing that Mn is transferred from the MnAs particles into the nanowires. (C) 2011 Elsevier Ltd. All rights reserved

    Protein aggregation in E. coli : short term and long term effects of nutrient density.

    No full text
    During exponential growth some cells of E. coli undergo senescence mediated by asymmetric segregation of damaged components, particularly protein aggregates. We showed previously that functional cell division asymmetry in E. coli was responsive to the nutritional environment. Short term exposure as well as long term selection in low calorie environments led to greater cell division symmetry and decreased frequency of senescent cells as compared to high calorie environments. We show here that long term selection in low nutrient environment decreased protein aggregation as revealed by fluorescence microscopy and proportion of insoluble proteins. Across selection lines protein aggregation was correlated significantly positively with the RNA content, presumably indicating metabolic rate. This suggests that the effects of caloric restriction on cell division symmetry and aging in E. coli may work via altered protein handling mechanisms. The demonstrable effects of long term selection on protein aggregation suggest that protein aggregation is an evolvable phenomenon rather than being a passive inevitable process. The aggregated proteins progressively disappeared on facing starvation indicating degradation and recycling demonstrating that protein aggregation is a reversible process in E. coli

    Electronic structure of (Ga,Mn)As revisited

    Get PDF
    The detailed nature of electronic states mediating ferromagnetic coupling in dilute magnetic semiconductors, specifically (Ga,Mn)As, has been an issue of long debate. Two confronting models have been discussed emphasizing host band versus impurity band carriers. Using angle resolved photoemission we show that the electronic structure of the (Ga,Mn)As system is significantly modified from that of GaAs throughout the valence band. Close to the Fermi energy, the presence of Mn induces a strong mixing of the bulk bands of GaAs, which results in the appearance of a highly dispersive band in the gap region of GaAs. For Mn concentrations above 1% the band reaches the Fermi level, and can thus host the delocalized holes needed for ferromagnetic coupling. Overall, our data provide a firm evidence of delocalized carriers belonging to the modified host valence band

    Thermal diffusion of Mn through GaAs overlayers on (Ga, Mn) As

    No full text
    Thermally stimulated diffusion of Mn through thin layers of GaAs has been studied by x-ray photoemission. (Ga, Mn) As samples with 5 at% Mn were capped with 4, 6 and 8 monolayer (ML) GaAs, and Mn diffusing through the GaAs was trapped on the surface by means of amorphous As. It was found that the out-diffusion is completely suppressed for an 8 ML thick GaAs film. The short diffusion length is attributed to an electrostatic barrier formed at the (Ga, Mn) As/GaAs interface
    corecore