503 research outputs found

    Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers

    Full text link
    Some results on the ordered statistics of eigenvalues for one-dimensional random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric quantum mechanics with disorder, the existence of low energy delocalized states induces eigenvalue correlations and makes the ordered statistics problem nontrivial. The resulting distributions are used to analyze the problem of classical diffusion in a random force field (Sinai problem) in the presence of weakly concentrated absorbers. It is shown that the slowly decaying averaged return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}}, where gg is the strength of the random force field and ρ\rho the density of absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting "Fundations and Applications of non-equilibrium statistical mechanics", Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left adde

    Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs

    Full text link
    A derivation of the spectral determinant of the Schr\"odinger operator on a metric graph is presented where the local matching conditions at the vertices are of the general form classified according to the scheme of Kostrykin and Schrader. To formulate the spectral determinant we first derive the spectral zeta function of the Schr\"odinger operator using an appropriate secular equation. The result obtained for the spectral determinant is along the lines of the recent conjecture.Comment: 16 pages, 2 figure

    Thermal noise and dephasing due to electron interactions in non-trivial geometries

    Full text link
    We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered metals and give a microscopic derivation of the correlation function of the scalar electric potentials in real space. Starting from the interacting Hamiltonian for electrons in a metal and the random phase approximation, we find a relation between the correlation function of the electric potentials and the density fluctuations which is valid for arbitrary geometry and dimensionality. We show that the potential fluctuations are proportional to the solution of the diffusion equation, taken at zero frequency. As an example, we consider networks of quasi-1D disordered wires and give an explicit expression for the correlation function in a ring attached via arms to absorbing leads. We use this result in order to develop a theory of dephasing by electronic noise in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB

    Lyapunov exponents, one-dimensional Anderson localisation and products of random matrices

    Get PDF
    The concept of Lyapunov exponent has long occupied a central place in the theory of Anderson localisation; its interest in this particular context is that it provides a reasonable measure of the localisation length. The Lyapunov exponent also features prominently in the theory of products of random matrices pioneered by Furstenberg. After a brief historical survey, we describe some recent work that exploits the close connections between these topics. We review the known solvable cases of disordered quantum mechanics involving random point scatterers and discuss a new solvable case. Finally, we point out some limitations of the Lyapunov exponent as a means of studying localisation properties.Comment: LaTeX, 23 pages, 3 pdf figures ; review for a special issue on "Lyapunov analysis" ; v2 : typo corrected in eq.(3) & minor change

    Sinai model in presence of dilute absorbers

    Full text link
    We study the Sinai model for the diffusion of a particle in a one dimension random potential in presence of a small concentration ρ\rho of perfect absorbers using the asymptotically exact real space renormalization method. We compute the survival probability, the averaged diffusion front and return probability, the two particle meeting probability, the distribution of total distance traveled before absorption and the averaged Green's function of the associated Schrodinger operator. Our work confirms some recent results of Texier and Hagendorf obtained by Dyson-Schmidt methods, and extends them to other observables and in presence of a drift. In particular the power law density of states is found to hold in all cases. Irrespective of the drift, the asymptotic rescaled diffusion front of surviving particles is found to be a symmetric step distribution, uniform for x<1/2ξ(t)|x| < {1/2} \xi(t), where ξ(t)\xi(t) is a new, survival length scale (ξ(t)=Tlnt/ρ\xi(t)=T \ln t/\sqrt{\rho} in the absence of drift). Survival outside this sharp region is found to decay with a larger exponent, continuously varying with the rescaled distance x/ξ(t)x/\xi(t). A simple physical picture based on a saddle point is given, and universality is discussed.Comment: 21 pages, 2 figure

    One-dimensional classical diffusion in a random force field with weakly concentrated absorbers

    Full text link
    A one-dimensional model of classical diffusion in a random force field with a weak concentration ρ\rho of absorbers is studied. The force field is taken as a Gaussian white noise with \mean{\phi(x)}=0 and \mean{\phi(x)\phi(x')}=g \delta(x-x'). Our analysis relies on the relation between the Fokker-Planck operator and a quantum Hamiltonian in which absorption leads to breaking of supersymmetry. Using a Lifshits argument, it is shown that the average return probability is a power law \smean{P(x,t|x,0)}\sim{}t^{-\sqrt{2\rho/g}} (to be compared with the usual Lifshits exponential decay exp(ρ2t)1/3\exp{-(\rho^2t)^{1/3}} in the absence of the random force field). The localisation properties of the underlying quantum Hamiltonian are discussed as well.Comment: 6 pages, LaTeX, 5 eps figure

    Characterization of the nanophase precipitation in a metastable beta titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction

    No full text
    The metastable beta Ti-6Mo-5Ta-4Fe (wt.%) alloys was synthesized by cold crucible levitation melting and then quenched in water from the beta phase field. In order to investigate the transformation sequence upon heating, thermal analysis methods such as electrical resistivity, dilatometry and neutron thermodiffraction were employed. By these methods, the different temperatures of transition were detected and solute partitioning was oberved to the beta matrix during the omega and alpha nanophase precipitatio

    Scattering theory on graphs (2): the Friedel sum rule

    Full text link
    We consider the Friedel sum rule in the context of the scattering theory for the Schr\"odinger operator -\Dc_x^2+V(x) on graphs made of one-dimensional wires connected to external leads. We generalize the Smith formula for graphs. We give several examples of graphs where the state counting method given by the Friedel sum rule is not working. The reason for the failure of the Friedel sum rule to count the states is the existence of states localized in the graph and not coupled to the leads, which occurs if the spectrum is degenerate and the number of leads too small.Comment: 20 pages, LaTeX, 6 eps figure

    Scattering for the Zakharov system in 3 dimensions

    Full text link
    We prove global existence and scattering for small localized solutions of the Cauchy problem for the Zakharov system in 3 space dimensions. The wave component is shown to decay pointwise at the optimal rate of t^{-1}, whereas the Schr\"odinger component decays almost at a rate of t^{-7/6}.Comment: Minor changes and referee's comments include

    Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder

    Full text link
    We study the distribution of the nn-th energy level for two different one-dimensional random potentials. This distribution is shown to be related to the distribution of the distance between two consecutive nodes of the wave function. We first consider the case of a white noise potential and study the distributions of energy level both in the positive and the negative part of the spectrum. It is demonstrated that, in the limit of a large system (LL\to\infty), the distribution of the nn-th energy level is given by a scaling law which is shown to be related to the extreme value statistics of a set of independent variables. In the second part we consider the case of a supersymmetric random Hamiltonian (potential V(x)=ϕ(x)2+ϕ(x)V(x)=\phi(x)^2+\phi'(x)). We study first the case of ϕ(x)\phi(x) being a white noise with zero mean. It is in particular shown that the ground state energy, which behaves on average like expL1/3\exp{-L^{1/3}} in agreement with previous work, is not a self averaging quantity in the limit LL\to\infty as is seen in the case of diagonal disorder. Then we consider the case when ϕ(x)\phi(x) has a non zero mean value.Comment: LaTeX, 33 pages, 9 figure
    corecore