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Abstract. The concept of Lyapunov exponent has long occupied a central place in

the theory of Anderson localisation; its interest in this particular context is that it

provides a reasonable measure of the localisation length. The Lyapunov exponent

also features prominently in the theory of products of random matrices pioneered by

Furstenberg. After a brief historical survey, we describe some recent work that exploits

the close connections between these topics. We review the known solvable cases of

disordered quantum mechanics involving random point scatterers and discuss a new

solvable case. Finally, we point out some limitations of the Lyapunov exponent as a

means of studying localisation properties.
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1. Introduction

Anderson localisation is the term used to describe a generic phenomenon, discovered

in the late fifties by P. W. Anderson, whereby the addition of a certain amount of disorder

or randomness in an otherwise deterministic medium causes the waves propagating in

the medium to become localised in space [2]. For quantum systems, the understanding of

transport properties requires a thorough study of how the presence of disorder affects the

nature of quantum states— a question first addressed in an earlier paper of Landauer and

Helland [40]. Since that time, the one-dimensional case has been discussed extensively

and has led to a better understanding of the physical mechanisms that are responsible

for localisation. A remarkable feature of one-dimensional systems is that almost all

states become localised as soon as there is any disorder. This result, first conjectured

by Mott and Twose [47], was made more rigorous by Borland [6] who considered an

infinite chain of identical localised potentials separated by regions of zero potential.

Assuming that the lengths of these regions are independent random variables with the

same probability distribution, Borland studied the growth rate of the wave function on

a semi-infinite chain with prescribed boundary conditions at one end. He then argued,

by using a “matching argument”, that the positivity of the growth rate implies the

exponential localisation of the wave functions. A purely mathematical proof using the

properties of transfer matrices was given by Matsuda and Ishii [44].

These physical arguments can in fact be made completely rigorous. The exponential

growth of the solutions of the Cauchy problem is a crucial feature of the proof that the

spectrum has no absolutely continuous component [53], and that it is pure-point [31].

If ψ(x,E) denotes a solution of the Cauchy problem (i.e. a solution of the Schrödinger

equation on the positive half-line subject to boundary conditions at x = 0) then the

quantity

γ(E) := lim
x→∞

ln |ψ(x,E)|
x

(1)

is a self-averaging quantity called the Lyapunov exponent of the disordered system. A

rigorous demonstration of the fact that, under certain hypotheses, γ also quantifies the

exponential decay of the eigenfunctions— and therefore that its reciprocal can serve

as a definition of the localisation length— appears for the first time in Ref. [10]. It

should be borne in mind, however, that this definition of the localisation length is only

useful if certain conditions are fulfilled; cases where the definition is inappropriate will

be considered briefly in §4.

In order to illustrate the localisation phenomenon, Anderson made use of a model

in which the wave function solves a difference equation. The general solution of this

“tight-binding” model takes the form of a product of random matrices, say,

Πn := MnMn−1 · · ·M1 (2)

where the Mj are independent and identically-distributed square matrices with a
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common probability measure µ(dM). The quantity

γµ := lim
n→∞

E (ln |Πn|)
n

(3)

is called the Lyapunov exponent of the product of random matrices and, as we shall

soon see, is effectively the same as γ.

Anderson localisation has been a powerful motivation for the study of products

of random matrices. For this reason, the search for precise conditions on the measure

µ(dM) that would guarantee the existence and the positivity of the Lyapunov exponent

γµ has been of particular interest. The main result in this respect is due to Furstenberg

[26]— a result published the same year as Borland’s paper; see also Oseledec [51] whose

work can be considered as an extension to dynamical systems of the work of Furstenberg

and Kesten [27] . Further developments of these results, and their application to the

study of localisation, are described in the works of Ishii [35], Bougerol and Lacroix [8],

Carmona and Lacroix [11], Lifshits et al. [41], Luck [42], Pastur and Figotin [54],

Crisanti et al. [19] and the references therein.

An important milestone in the development of the theory of localisation was the

discovery of the relationship between the Lyapunov exponent and the integrated density

of states N(E). It turns out that the characteristic function

Ω(E) := γ(E)− iπN(E) , (4)

viewed as a complex-valued function on R, is analytic in the upper half of the complex

plane [34, 62]. Interestingly, this analyticity property of the characteristic function was

in fact exploited much earlier by Dyson in his famous paper on the dynamics of a

disordered chain [21].

Products of random matrices appear naturally in several other problems related

to the physics of disordered systems— see the monographs [19, 42]— and is still the

subject of active research [24]. The concept of Lyapunov exponent is a very useful

tool for analysing a large class of systems with quenched disorder, such as magnetic

systems. A well-known prototype is the Ising model in a random magnetic field, where

the calculation of the free enegy reduces to analysing an infinite product of 2×2 matrices;

in this context, the Lyapunov exponent is proportional to the free energy per spin.

The group from which the matrices Mn in the product (2) are drawn varies not

only with the physical context but also with the choice of vector basis. In the analysis

of the Schrödinger equation in a random potential, a standard choice is to consider the

vector formed by the wave function and its derivative (ψ′(x) , ψ(x)). As we shall see

later on, the evolution of this vector is governed by matrices belonging to the group

SL(2,R). This is the formulation chosen for example in Refs. [15, 17] and in the present

article. If, instead, one chooses to focus on the scattering aspects of the problem then the

wave function, in a region where V (x) = 0, is a combination of incoming and outgoing

waves ψ(x) = A eikx +B e−ikx. In this setting, it is natural to consider transfer matrices

T connecting pairs of complex amplitudes (A,B). Current conservation then implies

that such transfer matrices belong to the group U(1, 1); see the appendix of Ref. [15]
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for further details, and Ref. [55] for a pedagogical presentation and a review of the

literature.

Interestingly, this scattering formulation provides a natural way of generalising the

one-dimensional model— which is associated with products of 2×2 matrices— to a quasi-

one-dimensional model where the matrices in the product are 2m× 2m, where m is the

number of conducting channels. The localisation problem then involves— not just one—

but rather m (counting multiplicity) Lyapunov exponents γ1 6 · · · 6 γm. Since the

pioneering work of Dorokhov [20], whose results were later rediscovered independently

by Mello, Pereyra and Kumar [45], this topic has attracted a lot of attention owing to its

relevance in the description of weakly disordered metallic wires; see the review [3]. These

early works relied on the so-called isotropy assumption, namely that each elementary

slice of disordered metal redistributes the current uniformly amongst the m conducting

channels. This assumption produces a set of Lyapunov exponents with the behaviour

γj = γ1 [1+β (j−1)], where β ∈ {1, 2, 4} is the Dyson index [3]. The smallest Lyapunov

exponent, which scales with the number of channels like γ1 ∝ 1/m, is usually interpreted

as the reciprocal of the localisation length. The ideas of Dorokhov and Mello et al. have

since been extended to other symmetry classes of disordered models; see the review

[23]. Another line of research stimulated by these ideas is to look for models where the

isotropy hypothesis may be relaxed [12, 46, 48, 49], with the aim of studying the passage

from one-dimensional to higher-dimensional localisation. To close these brief remarks

on the multichannel case, we point out that the Lyapunov exponent is at the heart of

numerical studies of localisation that rely on the scaling approach [38].

The present paper revisits the interplay between products of random matrices

of SL(2,R) and one-dimensional Anderson localisation. Whereas most of the

works cited above emphasise discrete models obtained by making the tight-binding

approximation [19, 42], we shall focus here on one-dimensional continuous models that

make use of the notion of point scatterer. One familiar example is the Kronig–Penney

model [39] based on delta-scatterers. We shall see that, by considering a natural

generalisation of the concept of point scatterer, we arrive at a useful interpretation

of a general product of random matrices as a model of disorder. We illustrate the

fruitfulness of this interpretation by exhibiting concrete instances of the probability

measure µ(dM) of the matrices Mj for which the Lyapunov exponent may be expressed

in terms of special functions. One of these models is new and has interesting connections

with Sinai’s study of diffusion in a random environment [7, 59]. Another justification

for focusing on models involving generalised random point scatterers is that— far from

being special— they can on the contrary be mapped onto the most general product of

random matrices in SL(2,R). Hence such models can in principle describe the whole of

one-dimensional disordered quantum mechanics.

The remainder of the paper is as follows: §2 describes the concept of generalised

point scatterer, explains how models of disorder may be constructed from them, and how

completely general products of matrices may be associated with such models. We then

list some known solvable cases. §3 is devoted to the analysis of a new example where



1D Anderson localisation and products of random matrices 5

the Lyapunov exponent may be expressed in terms of the generalised hypergeometric

function. The paper ends in §4 with a discussion of the limitations of the Lyapunov

exponent as a measure of localisation in disordered systems.

2. Generalised point scatterers and products of random matrices

2.1. Point scatterers and transfer matrices

A point scatterer is the idealised limit of a potential whose action is highly localised.

The most familiar example is the delta-scatterer at a point, say xj. In the context of

the Schrödinger equation

− ψ′′(x) + V (x)ψ(x) = E ψ(x) , x > 0 , (5)

this potential vanishes for every x 6= xj and is defined at x = xj via the boundary

condition (
ψ′(xj+)

ψ(xj+)

)
=

(
1 uj
0 1

)(
ψ′(xj−)

ψ(xj−)

)
(6)

where uj is the strength of the scatterer, i.e. V (x) =
∑

j uj δ(x − xj). This delta–

scatterer is generalised by replacing the 2 × 2 matrix on the right-hand side by an

arbitrary matrix, say Bj. Thus(
ψ′(xj+)

ψ(xj+)

)
= Bj

(
ψ′(xj−)

ψ(xj−)

)
. (7)

Conservation of the probability current requires Bj ∈ SL(2,R). If, instead of a single

scatterer, we consider a sequence of scatterers placed at the points

x1 < x2 < · · ·

then, assuming E = k2 > 0, the solution of the Schrödinger equation may be expressed

in the form (
ψ′(xn+)

ψ(xn+)

)
= Πn

(
ψ′(x1−)

ψ(x1−)

)
. (8)

where Πn is the product (2) with

Mj =

( √
k 0

0 1√
k

)(
cos θj − sin θj
sin θj cos θj

)(
1√
k

0

0
√
k

)
Bj (9)

and

θj = k `j , `j := xj+1 − xj .

Now, by applying the Gram–Schmidt algorithm to the columns, every 2× 2 matrix M

with unit determinant may be expressed in the form

M =

(
cos θ − sin θ

sin θ cos θ

)(
ew 0

0 e−w

)(
1 u

0 1

)
(10)
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for some real parameters θ, w and u. This is the Iwasawa decomposition of SL(2,R) into

compact, Abelian and nilpotent subgroups. Therefore, by working with point scatterers

of the form

Bj :=

(
ewj 0

0 e−wj

)(
1 uj
0 1

)
(11)

and taking E = k2 = 1, we obtain a correspondence between general products of

matrices Πn in SL(2,R) and the Schrödinger equation. The parameter k may be easily

reintroduced by simple dimensional analysis.

2.2. Product of random matrices—The Riccati variable

There are several options in defining a disordered quantum system with point

scatterers. The randomness may be in the strength of the scatterer, i.e. in the matrix

Bj, or in the position of the scatterer, i.e. in the coordinate xj or in both the strength

and the position; see [41] where various models are reviewed.

We shall henceforth confine our attention to the particular case where the spacing

between consecutive scatterers, i.e. the angle θj = k`j, is exponentially distributed:

P (`j ∈ S) = p

∫
S∩R+

e−p` d` (12)

where 1/p > 0 is the mean spacing. This is the situation that arises when impurities

are dropped uniformly on R with a mean density p.

The equation satisfied by the Riccati variable

Z(x) :=
ψ′(x)

ψ(x)
(13)

is

Z ′(x) = −E − Z2(x) for x /∈ {xj} (14)

and

Z(xj+) = Bj (Z(xj−)) for j ∈ N (15)

where Bj is the linear fractional transformation associated with the matrix Bj, i.e.

Bj(Z) := e2wj (Z + uj) . (16)

Because the spacing between consecutive scatterers is exponentially distributed, Z is

a Markov process, and it was shown by Frisch and Lloyd [25] (see also [15]) that the

stationary density f(Z) satisfies

d

dZ

[
(Z2 + E)f(Z)

]
+ p

∫
SL(2,R)

µB(dB)

[
f
(
B−1(Z)

) dB−1(Z)

dZ
− f(Z)

]
= 0 (17)

where µB is the probability measure of the random matrix B.

The relationship between the Riccati variable and the Lyapunov exponent is easy

to establish— at least heuristically. A completely rigorous treatment would follow the
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lines of Kotani’s work [37]. Given the particular form of the upper-triangular matrix

Bj, we have

ln |ψ(xn+)| = −wn + ln |ψ(xn−)|

= −wn +

∫ xn

xn−1

Z(x) dx+ ln |ψ(xn−1+)|

= · · · = −
n∑
j=1

wj +

∫ xn

x1

Z(x) dx+ ln |ψ(x1−)| . (18)

Dividing by xn and letting n→∞, we obtain

lim
n→∞

ln |ψ(xn)|
xn

= − lim
n→∞

1

xn

n∑
j=1

wj + lim
n→∞

1

xn

∫ xn

x1

Z(x) dx . (19)

Since

xn − x1 =
n−1∑
j=1

`j

where the `j are independent and identically distributed with mean 1/p, the law of large

numbers implies that

xn ∼ n/p almost surely, as n→∞ . (20)

Then, by the ergodic theorem,

γ = −pE(w) +

∫
R
Z f(Z) dZ (21)

almost surely, where f is the density of the stationary distribution of the Riccati variable.

The upshot is that the Lyapunov exponent of the system may in principle be computed

by solving the Frisch–Lloyd equation (17) for the stationary density, and then performing

the integral in Formula (21).

2.3. Correspondence with the Furstenberg theory

It is instructive to compare this method of calculation with that based on

Furstenberg’s theory [26, 30]. The concept of direction, through the projective space

P (R2), plays a prominent part in that theory. This is due to the fact that the product of

matrices grows if and only if the columns of the product tend to align along a common

direction. In R2, a direction may be parametrised by a single number; let us choose the

reciprocal z ∈ R ∪ {∞} of the slope. The columns of the product Πn have directions

that are random. When a vector of random direction, say z, is multiplied by a random

matrix

M =

(
a b

c d

)
(22)

a new vector is produced, whose direction is the random variable

M(z) :=
az + b

cz + d
. (23)
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We say that the distribution, say νµ(dz), of z is invariant under the action of matrices

drawn from µ if the distributions of the old and the new directions are identical, i.e.

M(z)
law
= z . (24)

In particular, if νµ(dz) has a density, say fµ(z), then this equality in law translates into

the following equation for fµ:

fµ(z) =

∫
SL(2,R)

µ(dM)
(
fµ ◦M−1) (z)

dM−1

dz
(z) . (25)

where, with some abuse of notation, z is no longer random. Knowing fµ, the Lyapunov

exponent γµ of the product Πn may then be computed by the formula

γµ =

∫
R

dzfµ(z)

∫
SL(2,R)

µ(dM) ln

∣∣∣∣∣M
(
z

1

)∣∣∣∣∣∣∣∣∣∣
(
z

1

)∣∣∣∣∣
. (26)

The calculation of γµ when M is of the form (10) and θ is exponentially distributed

with mean 1/p, independent of w and u, may then be related to the calculation of γ in

the previous subsection as follows:

(i) The projective variable z is the Riccati variable Z with E = k2 = 1.

(ii) The Furstenberg equation (25) for the invariant density reduces to the Frisch–Lloyd

equation (17) for the stationary density.

(iii) The Furstenberg formula (26) for γµ reduces to Formula (21) for γ and

γµ =
1

p
γ . (27)

The factor 1/p is due to the difference between the definitions: whereas (1) involves

the distance variable x, the growth of the matrix product is measured with respect

to the index n in (3)— x and n being related by (20).

2.4. Known solvable cases involving random point-scatterers

There is no systematic method for solving the integro-differential equation (17), but

some solvable cases have been found and are listed in Table 1. All but the first of these

cases have in common that one or both the parameters w and u in the expression for

the matrix B are exponentially or gamma distributed. The density of the exponential

and gamma distributions satisfies a differential equation with constant coefficients, and

this leads to a trick for reducing (17) to a purely differential form. This trick will be

illustrated in the next section.

Here, we consider the simplest example and merely write down the result. This

example consists of taking

B =

(
1 u

0 1

)
(28)
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where u is exponentially distributed with mean 1/q. Then the stationary density solves

d

dz

[(
z2 + k2

)
f(z)

]
− p f(z) + q

(
z2 + k2

)
f(z) = qN . (29)

The constant N = N(E) appearing on the right-hand side is the integrated density of

states per unit length of the quantum model; the Rice formula

N(E) = lim
|z|→∞

z2f(z) (30)

expresses its relationship to the tail of the stationary density. After integration, we

obtain

f(z) =
qN

z2 + k2
exp

[
−qz +

p

k
arctan

z

k

] ∫ z

−∞
exp

[
qt− p

k
arctan

t

k

]
dt .

The integrated density of states is then determined by the requirement that f be a

probability density. The final formulae for N and γ may be expressed neatly via the

characteristic function (4) of the disordered system: for E = k2 > 0,

Ω(E) = 2ik
W ′
−ip
2k
, 1
2

(−2ikq)

W−ip
2k
, 1
2

(−2ikq)
(31)

where Wα,β is a Whittaker function [32]. This formula, which was discovered

by Nieuwenhuizen [50] using a different approach, corresponds here to the case of

“repulsive” scatterers (u > 0); it is easily adapted to the “attractive” case u < 0

by simply changing the sign of q in Eq. (31) [15].

Density of ` Density of u Density of w Reference Special function

δ(`− 1/p) q/π
q2+u2

δ(w) [35]

p e−p` 1R+(`) q e−qu 1R+(u) δ(w) [50, 15] Whittaker

p e−p` 1R+(`) q2u e−qu 1R+(u) δ(w) [50, 15] Whittaker

p e−p` 1R+(`) δ(u) q e−qw 1R+(w) [15] Hypergeometric

p e−p` 1R+(`) δ(u) q e−2q|w| this article generalized Hypergeometric

Table 1. Known solvable cases involving random point scatterers. The notation 1A(x)

is used for the function that equals 1 if x ∈ A and 0 otherwise.

Besides the Lyapunov exponent, the low-energy behaviour of the density of states

is also of interest; it has been analysed for point scatterers with random positions in the

following cases: (i) when w = 0 and the probability density of u is supported on the

positive half-line but is otherwise arbitrary [37, 41]; (ii) in the converse situation where

u = 0 and it is w > 0 that is random [16].

2.5. Continuum limit and models involving Gaussian white noises or Lévy noises

No exact solution is known in the case where all three parameters ` = θ, w and u

are random. Some insight into the general case may however be gained by considering
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the continuum limit of an infinitely dense set of point scatterers with vanishingly weak

strengths, i.e.

θ , w , u→ 0 .

This limit was studied very recently in Ref. [17] in the most general case where the three

parameters of the Iwasawa decomposition (10) are correlated— the matrices Mj being

still mutually independent. This recent work corresponds to a generalisation of the

study of the Schrödinger equation with a potential V (x) = η(x) +W (x)2 −W ′(x) that

combines two (possibly correlated) Gaussian white noises η and W [33]; see Ref. [17] for

a detailed discussion.

Finally let us mention a generalisation of the model in another direction: by letting

the density of scatterers tend to infinity, it is possible to study certain singular limiting

measures for the strength of the scatterers. Such cases may be described in terms of

Lévy noises and were studied in [16, 37].

3. Supersymmetry: a new solvable case

In this section, we shall restrict our attention to the particular case where the point

scatterers are described by transfer matrices of the form

Bj =

(
ewj 0

0 e−wj

)
. (32)

As shown in Ref. [15], this corresponds to considering the potential

V = W 2 −W ′ (33)

where W is a superposition of delta-scatterers

W (x) =
∑
j

wj δ(x− xj) .

A potential of the form (33) is said to be supersymmetric with superpotential W . Hence

we shall refer to the point scatterer associated with (32) as “supersymmetric”. This case

has many interesting features: the corresponding Hamiltonian is factorisable and, when

the superpotential is deterministic and has the so-called “shape-invariance” property,

the discrete spectrum may be obtained exactly [18].

The disordered case is of interest in several physical contexts [14]: in particular, the

Schrödinger equation can be mapped onto the Dirac equation with a random mass—

a model relevant in several contexts of condensed matter physics; see the reviews

[14, 29, 41] and the introduction in Ref. [61]. The model is also closely connected

to diffusion in a random environment [7]; indeed, if we set

ψ(x) = exp

[
−
∫
W (x) dx

]
U(x)

then
1

2
U ′′(x)−W (x)U ′(x) = λU(x) with λ = −E

2
. (34)



1D Anderson localisation and products of random matrices 11

When E < 0, this is the equation satisfied by the Laplace transform of a hitting time of

the diffusion in the environment
∫
W (x) dx; see for instance [9].

After integrating with respect to z, the Frisch–Lloyd equation (17) for the stationary

density becomes(
z2 + E

)
f(z) + p

∫
R

dw %(w)

∫ ze−2w

z

f(t) dt = N(E) (35)

where % is the density of the random variable w. Our strategy for computing the

Lyapunov exponent will make use of three simple observations: firstly, the equivalence

between the supersymmetric Schrödinger equation and Equation (34) implies that the

spectrum is necessarily contained in R+. It follows that N(E) = 0 for E < 0 and

that the stationary density f is supported on the positive half-line; this facilitates the

calculation of the Lyapunov exponent. The second observation is that the characteristic

function (4) is an analytic function of E, except for a branch cut along the positive

half-axis. Therefore, if we find an analytical formula for the Lyapunov exponent

when E < 0, analytic continuation will furnish a formula for the case E > 0. The

third observation —which we alluded to earlier and whose exploitation goes back to

the works of Nieuwenhuizen [50] and Gjessing and Paulsen [28]— is that the integral

term appearing in (35) may be eliminated if % solves a linear differential equation with

(piecewise) constant coefficients.

With these points in mind, let us set

E = −k2 < 0

and take

%(w) = q e−2q|w| . (36)

If we write fp,q,k to indicate the dependence of the stationary density f on the parameters

p, q and k, then we have the following identity:

fp,q,k(z) =
1

k
f p

k
,q,1

(z
k

)
. (37)

It is therefore sufficient to consider the case k = 1, i.e. E = −1. It is then easily deduced

from the evenness of % that

f(z) =
1

z2
f(1/z) . (38)

As a consequence, to know f(z) for z > 1 is to know f(z) for 0 < z < 1, and vice-versa;

we shall at times implicitly make use of this helpful property.

3.1. Reduction to a differential equation

Following the recipe outlined in [15], we shall now deduce from the Frisch–Lloyd

equation (35) a differential equation for the density f . To this end, we introduce the

kernel

K(y) = −sign(y)
1

2
e−2q|y| (39)
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and note, for future reference, that K satisfies

K ′(y) = −sign(y) 2q K(y) , y 6= 0 , (40)

subject to

K(0±) = ∓1

2
. (41)

After permuting the order of integration in the Frisch–Lloyd equation, we find

(z2 − 1)f(z) + p

∫ ∞
0

K

(
1

2
ln
z

t

)
f(t) dt = 0 . (42)

Set

ϕ(z) := (z2 − 1)f(z)

and write∫ ∞
0

K

(
1

2
ln
z

t

)
f(t) dt =

∫ z

0

K

(
1

2
ln
z

t

)
f(t) dt+

∫ ∞
z

K

(
1

2
ln
z

t

)
f(t) dt .

Differentiation of (42) with respect to z then yields:

ϕ′(z) + pK(0+)f(z)− p q
z

∫ z

0

K

(
1

2
ln
z

t

)
f(t) dt

−pK(0−)f(z) + p
q

z

∫ ∞
z

K

(
1

2
ln
z

t

)
f(t) dt = 0 . (43)

Hence, in view of (41),

z [ϕ′(z)− p f(z)]− p q
∫ z

0

K

(
1

2
ln
z

t

)
f(t) dt+ p q

∫ ∞
z

K

(
1

2
ln
z

t

)
f(t) dt = 0 .

Another differentiation leads, after use of (41), to

d

dz
{z [ϕ′(z)− p f(z)]}+ p

q2

z

∫ ∞
0

K

(
1

2
ln
z

t

)
f(t) dt = 0 . (44)

The integral term may then be eliminated by making use of Equation (42); the result

is the second-order linear differential equation

z
d

dz

[
z

(
ϕ′ − p ϕ

z2 − 1

)]
− q2ϕ = 0 . (45)

3.2. The case q = 1

It may be verified by direct substitution that, when q = 1, the differential equation

(45), expressed in terms of the unknown f , has the solution

fp,1,1(z) =
A

p− 2

1

z

[
1− 1 + pz + z2

|z − 1|1− p
2 (z + 1)1+

p
2

]
(46)
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for p 6= 2. The normalisation constant A satisfies

1 =
2A

p− 2

∫ 1

0

[
1−

(
1− z
1 + z

) p
2 1 + pz + z2

1− z2

]
dz

z

z= 1−x
1+x
↓
=

2A

p− 2

∫ 1

0

[
2

1− x p
2
−1

1− x2
+
(

1− p

2

)
x

p
2
−1
]

dx (47)

=
2A

p− 2

{
2

∫ 1

0

1− x p
2
−1

1− x2
dx+

2

p

(
1− p

2

)}
. (48)

The value of this last integral is given explicitly by [32], §3.269, in terms of the digamma

function Ψ. Hence

1

A
=

1

2

Ψ(p/4)−Ψ(1/2)

p/4− 1/2
− 2

p
. (49)

The case p = 2 may be studied by letting p→ 2 in Equations (46,49). We get

f2,1,1(z) = A

[
1

2z
ln

∣∣∣∣z + 1

z − 1

∣∣∣∣− 1

(z + 1)2

]
and

1

A
=
π2

4
− 1 . (50)

Plots of the density (46) for several values of p are shown in Figure 1. The integral on

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

z

f p
,1

,1
Hz

L

p =1

p = 2
p = 4

p = 8

Figure 1. Plots of the stationary probability density f(z) for q = 1 and energy E = −1.

the right-hand side of Formula (21) may also be computed exactly; the end result is

Ω(−k2) =
p

2

1− 4k2

p2

Ψ
(
p
4k

)
−Ψ

(
1
2

)
+ 2k

p
− 1

. (51)

Analytic continuation to positive energies E = k2 > 0 consists of replacing k by −ik;

this yields

Ω(E + i0+) =
p

2

1 + 4k2

p2

Ψ
(
ip
4k

)
−Ψ

(
1
2

)
− 2ik

p
− 1

. (52)

Various limits may be analysed with the help of these expressions. Using

Ψ(z) =
z→0
−1

z
−C +

π2

6
z +O(z2)
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where C = 0.577 . . . is the Euler-Mascheroni constant, we deduce from (51)

Ω(−k2) =
k→∞

k + p

(
ln 2− 1

2

)
+O(k−1) . (53)

Analytic continuation then shows that N(k2) ∼ k/π in the limit k → ∞, as expected

from the free case. Also, the high-energy Lyapunov exponent tends to a constant:

γ(k2) ∼ p (ln 2− 1/2); see Fig. 2.

In the low-energy limit, by using

Ψ(z) =
z→∞

ln z − 1

2z
+O(z−2) ,

we obtain

Ω(−k2) =
k→0

p/2

ln( p
k
) + C− 1

+O
(
k2

ln k

)
. (54)

Analytic continuation to positive energies allows one to recover the Dyson singularity

of the integrated density of states and the corresponding vanishing of the Lyapunov

exponent:

N(k2) ∼ g

2 ln2 k
and γ(k2) ∼ g

| ln k|
with g = p/2. In this k → 0 limit, we thus recover as expected the same results as

in the case where the superpotential W is a Gaussian white noise; the characteristic

function for this case is recalled below. The fact that γ → 0+ as E → 0+ means that

the eigenstates become delocalised (or extended) in that limit; see the discussion in

Section 4. Plots of γ and N for positive energy are shown in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

k

N
Hk

2
L

point scatterers
for p = 2

g . w .n.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

k

Γ
Hk

2
L

p = 2

g . w .n.

Figure 2. Plots of N and γ against k =
√
E for p = 2 and q = 1. The

integrated density of states exhibits the Dyson singularity. For comparison, the results

corresponding to the case where W is a Gaussian white noise of strength g = p/2q2 = 1

are also shown as blue dashed curves. The thin line is the asymptote of the Lyapunov

exponent.
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3.3. The characteristic function for arbitrary q > 0

Although the calculations are somewhat tedious, the more general case q > 0 is

also tractable. The results are summarised in the following

Theorem 1. The invariant probability density is given by

fp,q,1(z) =
C

z

∫ ∞
0

e−
x
4
(z+1/z)M p

4
,q(x)

dx√
x
.

where C is a normalisation constant and Mα,β is a Whittaker function.

Corollary 3.1. For E = k2 > 0.

Ω(E + i0+) = −ik
q + 1

q

3F2

(
q + 1

2
− ip

4k
, q + 2, q; 2q + 1, q + 3

2
; 1
)

3F2

(
q + 1

2
− ip

4k
, q + 1, q + 1; 2q + 1, q + 3

2
; 1
) .

Proof. See Appendix A.

Although this formula for Ω in terms of a known special function is pleasing, the task

of extracting from it concrete information is not entirely straightforward. We proceed

to discuss various limits.

The integrated density of states behaves in the limit E → +∞ as in the free case.

We may obtain the behaviour of γ by using the perturbative approach described in

Ref. [4]. When the superpotential W is given by a superposition of delta–functions, the

high energy Lyapunov exponent of the supersymmetric Hamiltonian tends to a finite

limit given by γ∞ = pE(ln coshw). Therefore we obtain

γ(E) ∼ p

2

[
1

q
−Ψ

(q
2

+ 1
)

+ Ψ

(
q + 1

2

)]
as E →∞ . (55)

For example, in the case q = 1, we recover the limit γ ∼ p (ln 2− 1/2) discussed earlier.

The low-energy limit may be conveniently studied by using the integral

representation of the characteristic function

Ω(−k2) = k

∫ ∞
0

dx√
x
M p

4k
,q(x)K1(x/2)∫ ∞

0

dx√
x
M p

4k
,q(x)K0(x/2)

(56)

following from (A.25). We set E = −k2 = −1 for simplicity. The p→∞ limit provides

the E → 0 behaviour, after reintroducing k. We now analyse the integrals in this limit.

There holds [32]

M p
4
,q(x) ∼ xq+1/2 as x→ 0 (57)

and, since the Whittaker function solves the differential equation

w′′(x) =
x2 − p x+ (4q2 − 1)

4x2
w(x) ,

we expect the asymptotic form (57) to hold for x smaller than (4q2−1)/p (this reasoning

assumes that 4q2 − 1 > 0). Moreover, we see from the differential equation that



1D Anderson localisation and products of random matrices 16

the Whittaker function is a rapidly oscillating function in the interval [x−, x+] where

x± = p
2
±
√

(p
2
)2 − 4q2 + 1; in the limit of interest here we have x− ∼ (4q2 − 1)/p and

x+ ∼ p. Thus we expect that the contribution to the integrals of the interval [x−, x+] is

negligible. For x exceeding x+ we have

1√
x
M p

4
,q(x)Ks(x/2) ∼ x−

p
4
−1 .

Finally both integrals in (56) are dominated by the interval [0, x−], from which we get

Ω(−1) ∼
p→∞

q + 1

q

2

x− ln(1/x−)
∼ p

ln p
. (58)

Re-introducing k, we indeed get the expected behaviour Ω(−k2) ∼ −1/ ln k for k → 0.

The limit p→∞ and q →∞ keeping p/q2 fixed corresponds to a case where W (x)

converges to a Gaussian white noise of strength g = pE(w2) = p/2q2— a model that has

been solved in Ref. [7, 52] (see also [41]). Therefore we expect that the characteristic

function (56), i.e. Eq. (A.30), converges in this limit towards the expression

Ω(−k2) −→
p→∞ , q=

√
p/2g

k
K1(k/g)

K0(k/g)
. (59)

4. Concluding remarks: limitations of the Lyapunov exponent for the study

of localisation

To close this short review, we point out the limitations of the Lyapunov exponent

as a means of characterising the localised nature of the spectrum in a disordered system.

A first observation is that the definition (1) relies on the assumption of a linear increase

of ln |ψ(x;E)|, i.e. on the application of the central limit theorem. It is however

possible to consider models of disorder such that ln |ψ(x;E)| scales as xα, leading to the

phenomenon of sub-localisation (for α < 1) or super-localisation (for α > 1); this has

been studied in, for example, Refs. [4, 5, 43, 58] (see also references therein). However,

this limitation is easily overcome by extending the notion of the Lyapunov exponent so

that it characterises the typical length over which eigenstates are localised.

Another, more serious, limitation of the usefulness of the Lyapunov exponent

pertains to the possible existence of extended states in one dimension. This might occur

when the disordered potential is correlated [36]— as happens for instance in the dimer

model. It might occur also for symmetry reasons, as is the case for the supersymmetric

Hamiltonians studied in Refs. [7, 13, 14, 33, 61] and in section 3; there, the Lyapunov

exponent γ(E) decays to zero in the limit of zero energy. In this respect, it must

first be pointed out that the vanishing of the Lyapunov exponent is a necessary but

not a sufficient condition for delocalisation; sometimes it only signals sub-localisation.

Secondly, several works on disordered supersymmetric quantum mechanics have shown

that the Lyapunov exponent, when it vanishes at the bottom of the spectrum does not

provide the relevant length scale characterising the localisation of eigenstates at low

non-zero energies. As mentioned already in section 3, when E(W ) = 0, the Lyapunov
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exponent vanishes like γ(E) ∼ g/| lnE| as E → 0 [7, 13, 14]. This suggests that low-

energy eigenstates are localised on a scale commensurate with | lnE|/g. However, the

study of the ordered statistics problem [60, 61], as well as the analysis of other physical

quantities such as the averaged Green’s function at non coinciding points [29, 7] or the

boundary-sensitive averaged density of states [61], show that eigenstates are localised

on a much larger scale, namely | lnE|2/g.

The inability of the Lyapunov exponent to capture the localisation property for

energies E ∼ Ec where γ(Ec) = 0 may be related to the fact that it is defined, via

Eq. (1), in terms of a solution ψ(x;E) of the Cauchy problem that vanishes at just one

boundary. This definition may indeed fail to describe the interesting properties of the

real eigenstates— which are solutions of the Schrödinger equation vanishing at the two

boundaries x = 0 and x = L— as these eigenstates become less localised.
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Appendix A. Proofs of Theorem 1 and its corollary

Let us look for a solution of the differential equation (45) of the form

ϕ(z) := zq
(

1− z
1 + z

) p
2

y(z) .

Then

y′′ +

[
2q + 1

z
+

p/2

z − 1
+
−p/2
z + 1

]
y′ +

p q

z(z − 1)(z + 1)
y = 0 . (A.1)

The solution we require has various representations in terms of special functions.

Appendix A.1. Heun’s function

Heun’s differential equation is [57]

y′′ +

[
η

z
+

δ

z − 1
+

ε

z − a

]
y′ +

αβz − q
z(z − 1)(z − a)

y = 0 (A.2)

where the parameters satisfy the relation

α + β + 1 = η + δ + ε .

Heun’s function is the particular solution analytic inside the unit disk:

Hl(a, q;α, β, η, δ; z) :=
∞∑
n=0

ynz
n , |z| < 1 , (A.3)
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where the yn satisfy the recurrence relation

a(n+ 2)(n+ 1 + η) yn+2

− [(n+ 1)(n+ η + δ)a+ (n+ 1)(n+ η + ε) + q] yn+1

+(n+ α)(n+ β) yn = 0 (A.4)

with the starting values

y0 = 1 and y1 =
q

aη
. (A.5)

Comparing Equation (A.1) with Heun’s equation (A.2), we find the particular solution

y = Hl(−1,−pq; 0, 2q, 2q + 1, p/2; z) .

The recurrence relation for the coefficients yn of this solution is

(n+ 2)(n+ 2q + 2) yn+2 = p(n+ q + 1) yn+1 + n(n+ 2q) yn (A.6)

with the starting values

y0 = 1 and y1 =
pq

2q + 1
. (A.7)

It follows in particular that y is strictly positive for z > 0. Hence, for z ∈ [0, 1),

fp,q,1(z) =
Czq

1− z2

(
1− z
1 + z

) p
2

Hl(−1,−pq; 0, 2q, 2q + 1, p/2; z) (A.8)

where C is a normalisation constant. The property (38) provides the obvious formula

in the interval z > 1.

Appendix A.2. Gauss’ hypergeometric function

Set

a :=
p

4
+ q − 1

2
, b :=

p

4
and c := q +

1

2
.

Then, by comparing the Taylor series, we find that

Hl(−1,−pq; 0, 2q, 2q + 1, p/2; z)

=
(1 + z)2b

c(c+ 1)

{
(a+ 1)(b+ 1)z2(1− z2) 2F1

(
a+ 2, b+ 2; c+ 2; z2

)
+(c+ 1) [c(1− z)− bz] (1 + z) 2F1

(
a+ 1, b+ 1; c+ 1; z2

)}
. (A.9)

The contiguity relation

t(1− t)(a+ 1)(b+ 1) 2F1(a+ 2, b+ 2; c+ 2; t)

+ [c− (a+ b+ 1)t] (c+ 1) 2F1(a+ 1, b+ 1; c+ 1; t)

−c(c+ 1) 2F1(a, b; c; t) = 0 (A.10)

leads to the simpler expression

Hl(−1,−pq; 0, 2q, 2q + 1, p/2; z) (A.11)

= (1 + z)2b
{

2F1

(
a, b; c; z2

)
− b

c
z(1− z) 2F1

(
a+ 1, b+ 1; c+ 1; z2

)}
.
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The differentiation formula

2F
′
1(a, b; c; t) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; t)

then yields

Hl(−1,−pq; 0, 2q, 2q + 1, p/2; z)

= (1 + z)2b
{

2F1

(
a, b; c; z2

)
− z

a
(1− z) 2F

′
1

(
a, b; c; z2

)}
(A.12)

= (1 + z)2b
{

2F1

(
a, b; c; z2

)
− 1

2a
(1− z)

d

dz
2F1

(
a, b; c; z2

)}
(A.13)

=
−1

2a

(1 + z)2b

(1− z)2a−1

{
− 2a(1− z)2a−1 2F1

(
a, b; c; z2

)
+ (1− z)2a

d

dz
2F1

(
a, b; c; z2

)}
. (A.14)

So we obtain the “compact” representation

Hl(−1,−pq; 0, 2q, 2q+1, p/2; z) = −(1−z)2(1−q)
(

1 + z

1− z

) p
2

F ′p,q(z) , (A.15)

where

Fp,q(z) :=
(1− z)

p
2
+2q−1

p
2

+ 2q − 1
2F1

(
p

4
+ q − 1

2
,
p

4
; q +

1

2
; z2
)
. (A.16)

Appendix A.3. The associated Legendre function

Formula (6) in [22], §3.13, expresses the hypergeometric function in terms of the

associated Legendre function:

Γ

(
q +

1

2

)
Q

p
4
− 1

2
q−1 (cosh η) = 2

√
π ei(

p
4
− 1

2)π Γ

(
p

4
+ q +

1

2

)
×
[

e−η

(1− e−η)2

]q (
1 + e−η

1− e−η

) p
4
− 1

2

Fp,q
(
e−η
)
. (A.17)

Equation (8) in [32], §7.621, gives a useful integral representation of the Legendre

function in terms of a Whittaker function:∫ ∞
0

e−
x
4
(z+1/z)M p

4
− 1

2
,q− 1

2
(x)

dx

x

= 2
Γ(2q)

Γ(q + p
4
− 1

2
)
e−i

p
4
− 1

2
π

(
1− z
1 + z

) p
4
− 1

2

Q
p
4
− 1

2
q−1

(
z + 1/z

2

)
. (A.18)

Then, by Equation (A.17), we obtain

−
[

z

(1− z)2

]q
1− z
1 + z

F ′p,q(z) =
1

4
√
π(p

4
− 1

2
+ q)

Γ(q + 1/2)

Γ(2q)

×
∫ ∞
0

e−
x
4
(z+1/z)M p

4
− 1

2
,q− 1

2
(x)

[
q

xz
−
(

1− z
2z

)2
]

dx . (A.19)
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Now,

M p
4
− 1

2
,q− 1

2
(x)

[
q

xz
−
(

1− z
2z

)2
]

= M p
4
− 1

2
,q− 1

2
(x)

[(
q

x
+

1

2

)
1

z
− 1 + z2

4z2

]
=

p
4

+ q − 1
2

2q
√
x

1

z
M p

4
,q(x) +

1

z
M ′

p
4
− 1

2
,q− 1

2
(x)− 1 + z2

4z2
M p

4
− 1

2
,q− 1

2
(x) (A.20)

where we have used Formulae (13.4.28) and (13.4.32) from [1] to obtain the last equality.

The proof of Theorem 1 follows after reporting this in Equation (A.19) and using

integration by parts for the term involving the derivative of the Whittaker function.

Remark. Formula (5) in [22], §2.8, expresses Fp,0 in simple terms:

Fp,0(z) =
1

p− 2

[(
1− z
1 + z

) p
2
−1

+ 1

]
. (A.21)

It then follows from Equation (A.17) and from the recurrence relation for the associated

Legendre function (see Formula (18) in [22], §3.8) that, for q ∈ N, Fp,q may be expressed

in terms of elementary functions. For example, we have

Fp,1(z) =
1/8(

p
4
− 1

2

) (
p
4

+ 1
2

) (1− z)2

z

[
1−

(
1− z
1 + z

) p
2
−1
]

(A.22)

and

Fp,2(z) =
3/32(

p
4
− 3

2

) (
p
4
− 1

2

) (
p
4

+ 1
2

) (
p
4

+ 3
2

)
× (1− z)4

z3

{(
1− z
1 + z

) p
2
−1 [

z2 +
(p

2
− 1
)
z + 1

]
−
[
z2 −

(p
2
− 1
)
z + 1

]}
. (A.23)

Formulae for fp,1,1 and fp,2,1 are easily deduced.

Appendix A.4. The characteristic function

Define

f̂p,q,k(s) :=

∫ ∞
0

z−sfp,q,k(z) dz . (A.24)

Using Theorem 1 and changing the order of integration, we find

f̂p,q,1(s) = 2C

∫ ∞
0

M p
4
,q(x)Ks

(x
2

) dx√
x

= 2
√
π C

∫ ∞
0

M p
4
,q(x)W0,s(x)

dx

x
. (A.25)

Next, Formula (7) in [22], §6.9, says

M p
4
,q(x) = (−1)q+

1
2M− p

4
,q(−x) .

Hence

f̂p,q,1(s) = 2
√
π C (−1)q+

1
2

∫ ∞
0

M− p
4
,q(−x)W0,s(x)

dx

x
. (A.26)

The integral on the right-hand side is of the same form as that in [32], §7.625, Formula

(1)— albeit outside the range indicated since in our case α = −1 and β = 1.
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Nevertheless, direct numerical verification indicates that the formula does remain valid

and so

f̂p,q,1(s) = 2
√
π C

Γ(q + 1 + s)Γ(q + 1− s)
Γ
(
q + 3

2

)
×3F2

(
q +

1

2
− p

4
, q + 1 + s, q + 1− s; 2q + 1, q +

3

2
; 1

)
. (A.27)

The normalisation condition

f̂p,q,1(0) = 1

yields

C =
Γ
(
q + 3

2

)
2
√
π Γ(q + 1)2 3F2

(
q + 1

2
− p

4
, q + 1, q + 1; 2q + 1, q + 3

2
; 1
) (A.28)

and so we deduce the formula:

f̂p,q,1(s) =
Γ(q + 1 + s)Γ(q + 1− s)

Γ(q + 1)2

× 3F2

(
q + 1

2
− p

4
, q + 1 + s, q + 1− s; 2q + 1, q + 3

2
; 1
)

3F2

(
q + 1

2
− p

4
, q + 1, q + 1; 2q + 1, q + 3

2
; 1
) (A.29)

for −1 ≤ Re s ≤ 1. Then, using Formula (21) for the Lyapunov exponent, together with

the identity (37) and the fact that N(E) = 0 for E < 0, we eventually find

Ω(−k2) = k
q + 1

q

3F2

(
q + 1

2
− p

4k
, q + 2, q; 2q + 1, q + 3

2
; 1
)

3F2

(
q + 1

2
− p

4k
, q + 1, q + 1; 2q + 1, q + 3

2
; 1
) . (A.30)

The analytic continuation from negative to positive energy consists of replacing k by

−ik. This completes the proof of Corollary 3.1.
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