5 research outputs found
A hybrid modular approach for dynamic fault tree analysis
YesOver the years, several approaches have been developed for the quantitative analysis of dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations; however, they appear to suffer from the state-space explosion and high computational requirements, compromising their efficacy. Modularisation techniques have been developed to address these issues by identifying and quantifying static and dynamic modules of the fault tree separately by using binary decision diagrams and Markov models. Although these approaches appear effective in reducing computational effort and avoiding state-space explosion, the reliance of the Markov chain on exponentially distributed data of system components can limit their widespread industrial applications. In this paper, we propose a hybrid modularisation scheme where independent sub-trees of a DFT are identified and quantified in a hierarchical order. A hybrid framework with the combination of algebraic solution, Petri Nets, and Monte Carlo simulation is used to increase the efficiency of the solution. The proposed approach uses the advantages of each existing approach in the right place (independent module). We have experimented the proposed approach on five independent hypothetical and industrial examples in which the experiments show the capabilities of the proposed approach facing repeated basic events and non-exponential failure distributions. The proposed approach could provide an approximate solution to DFTs without unacceptable loss of accuracy. Moreover, the use of modularised or hierarchical Petri nets makes this approach more generally applicable by allowing quantitative evaluation of DFTs with a wide range of failure rate distributions for basic events of the tree.This work was supported in part by the Dependability Engineering Innovation for Cyber Physical Systems (CPS) (DEIS) H2020 Project under Grant 732242, and in part by the LIVEBIO: Light-weight Verification for Synthetic Biology Project under Grant EPSRC EP/R043787/1
Safety + AI: A novel approach to update safety models using artificial intelligence
YesSafety-critical systems are becoming larger and more complex to obtain a higher level of functionality. Hence, modeling and evaluation of these systems can be a difficult and error-prone task. Among existing safety models, Fault Tree Analysis (FTA) is one of the well-known methods in terms of easily understandable graphical structure. This study proposes a novel approach by using Machine Learning (ML) and real-time operational data to learn about the normal behavior of the system. Afterwards, if any abnormal situation arises with reference to the normal behavior model, the approach tries to find the explanation of the abnormality on the fault tree and then share the knowledge with the operator. If the fault tree fails to explain the situation, a number of different recommendations, including the potential repair of the fault tree, are provided based on the nature of the situation. A decision tree is utilized for this purpose. The effectiveness of the proposed approach is shown through a hypothetical example of an Aircraft Fuel Distribution System (AFDS).DEIS H2020 Project under Grant 73224
Integrating Existing Safety Analyses into SysML
Migrating systems and safety engineering (often with legacy processes and certified tools) towards a modelbased systems engineering (MBSE) environment is a socio-technical problem. Establishing a commonconceptual framework requires agreement on modelling artefacts and the integration of existing tool chainsto minimise disruption. We discuss our experience integrating a SysML Safety Profile to model fault treesbut which has the prerequisite requirement to continue the analysis of those models by existing tools. Wedemonstrate a lightweight profile that minimally captures the fault logic for a Rolls-Royce gas turbineengine controller and provides specific in-house extensions for both fault tree and engine dispatch analysisby exporting model entities and relationships from the SysML fault trees. During integration we realised amore fundamental need to reconcile the systems engineers’ functional view with the safety engineers’focus on failure modes and fault logic in order to maximimse the longer term benefits of MBSEdevelopment
Recommended from our members
DDI: A Novel Technology And Innovation Model for Dependable, Collaborative and Autonomous Systems
YesDigital transformation fundamentally changes established practices in public and private sector. Hence, it represents an opportunity to improve the value creation processes (e.g., “industry 4.0”) and to rethink how to address customers’ needs such as “data-driven business models” and “Mobility-as-a-Service”. Dependable, collaborative and autono-mous systems are playing a central role in this transformation process. Furthermore, the emergence of data-driven approaches combined with autonomous systems will lead to new business models and market dynamics. Innovative approaches to re-organise the value creation ecosystem, to enable distributed engineering of dependable systems and to answer urgent questions such as liability will be required. Consequently, digital transformation requires a comprehensive multi-stakeholder approach which properly balances technology, ecosystem and business innovation. Targets of this paper are (a) to introduce digital transformation and the role of / opportunities provided by autonomous systems, (b) to introduce Digital Depednability Identities (DDI) - a technology for dependability engineering of collaborative, autonomous CPS, and (c) to propose an appropriate agile approach for innovation management based on business model innovation and co-entrepreneurship.Science Foundation Ireland grant 13/RC/2094, by the Horizon 2020 programme within the OpenInnoTrain project (grant agreement 823971) ; H2020 SESAME project (grant agreement 101017258)
A conceptual framework to incorporate complex basic events in HiP-HOPS
Reliability evaluation for ensuring the uninterrupted system operation is an integral part of dependable system development. Model-based safety analysis (MBSA) techniques such as Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) have made the reliability analysis process less expensive in terms of effort and time required. HiP-HOPS uses an analytical modelling approach for Fault tree analysis to automate the reliability analysis process, where each system component is associated with its failure rate or failure probability. However, such non-state-space analysis models are not capable of modelling more complex failure behaviour of component like failure/repair dependencies, e.g., spares, shared repair, imperfect coverage, etc. State-space based paradigms like Markov chain can model complex failure behaviour, but their use can lead to state-space explosion, thus undermining the overall analysis capacity. Therefore, to maintain the benefits of MBSA while not compromising on modelling capability, in this paper, we propose a conceptual framework to incorporate complex basic events in HiP-HOPS. The idea is demonstrated via an illustrative example