2,219 research outputs found

    Maser action in methanol transitions

    Full text link
    We report the detection with the ATCA of 6.7 GHz methanol emission towards OMC-1. The source has a size between 40'' and 90'', is located to the south-east of Ori-KL and may coincide in position with the 25 GHz masers. The source may be an example of an interesting case recently predicted in theory where the transitions of traditionally different methanol maser classes show maser activity simultaneously. In addition, results of recent search for methanol masers from the 25 and 104.3 GHz transitions are reported.Comment: To appear in the Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galactic Nuclei", Eds. Y.Hagiwara, W.A.Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwer; author list has been corrected, text is unchange

    Database of Molecular Masers and Variable Stars

    Full text link
    We present the database of maser sources in H2O, OH and SiO lines that can be used to identify and study variable stars at evolved stages. Detecting the maser emission in H2O, OH and SiO molecules toward infrared-excess objects is one of the methods of identification long-period variables (LPVs, including Miras and Semi-Regular), because these stars exhibit maser activity in their circumstellar shells. Our sample contains 1803 known LPV objects. 46% of these stars (832 objects) manifest maser emission in the line of at least one molecule: H2O, OH or SiO. We use the database of circumstellar masers in order to search for long-periodic variables which are not included in the General Catalogue of Variable Stars (GCVS). Our database contains 4806 objects (3866 objects without associations in GCVS catalog) with maser detection in at least one molecule. Therefore it is possible to use the database in order to locate and study the large sample of long-period variable stars. Entry to the database at http://maserdb.netComment: Accepted for publication in RA

    THE MACROKINETICS PARAMETERS OF THE HYDROCARBONS COMBUSTION IN THE NUMERICAL CALCULATION OF ACCIDENTAL EXPLOSIONS IN MINES

    Get PDF
    Purpose. Obtaining effective parameters of the macrokinetics of combustion of hydrocarbons in the deflagration and detonation regime for the numerical calculation of emergency explosions in mine workings. Methodology. Mathematical modeling, numerical experiment, kinetics analysis of explosive combustion reaction, analysis and synthesis. Findings. The paper analyzes the parameters of the kinetic equation against experimental data. Obtaining such data in a physical experiment for explosive chemical reactions meets serious difficulties. This is due to the size of the reaction zone not exceeding fractions of a millimeter, the lack of time resolution of experimental techniques and other factors leading to errors in direct measurements and the emergence of multiple solutions. This possibility contributes to obtaining a simultaneous numerical solution of the equations of gas dynamics and chemical kinetics. In the numerical experiment, a direct relationship between the macrokinetic characteristics of the chemical reaction and the parameters of the discontinuous flow of the reacting gas stream is established: velocity, pressure in the front and behind the front of the detonation and deflagration wave. Based on this, Arrhenius characteristics of the reaction – preexponential and effective activation energy for the hydrocarbons under consideration are obtained. Originality. Macrokinetic parameters are established for simulating one-stage ignition and burning of the most probable hydrocarbons of the mine atmosphere in the deflagration and detonation regime. Modeling of explosive combustion of premixed hydrocarbons in stoichiometric concentrations is performed. It is shown that the values of the effective activation energy in explosive combustion reactions are of less importance in contrast to steady-state combustion reactions because of the effect of the gas-dynamical effects of the shock wave on the reaction rate. The Arrhenius characteristics of the reaction – the pre-exponential and the effective activation energy – have been agreed upon, according to the gas dynamic and kinetic parameters of the course of the explosive combustion reaction. Practical value. The obtained parameters of the macrokinetics of the explosive combustion reaction make it possible to apply simple kinetic mechanisms in practical calculations of the processes of deflagration and detonation combustion, and to predict the parameters of emergency explosions in conditions of mine workings with sufficient accuracy. This also makes it possible to solve the problem of accounting for the presence of heavy hydrocarbons in themine atmosphere as products of coal pyrolysis in underground fires as factors of increasing the risk of emergency explosions

    Detection of a new methanol maser line with ALMA

    Full text link
    Aims. We aimed at investigating the structure and kinematics of the gaseous disk and outflows around the massive YSO S255 NIRS3 in the S255IR-SMA1 dense clump. Methods. Observations of the S255IR region were carried out with ALMA at two epochs in the compact and extended configurations. Results. We serendipitously detected a new, never predicted, bright maser line at about 349.1 GHz, which most probably represents the CH3_3OH 14114014_{1} - 14_{0} A+^{- +} transition. The emission covers most of the 6.7 GHz methanol maser emission area of almost 1^{\prime\prime} in size and shows a velocity gradient in the same sense as the disk rotation. No variability was found on the time interval of several months. It is classified as Class II maser and probably originates in a ring at a distance of several hundreds AU from the central star.Comment: 4 pages, 4 figures, accepted by Astronomy and Astrophysic

    Relation between parameters of dust and parameters of molecular and atomic gas in extragalactic star-forming regions

    Full text link
    The relationships between atomic and molecular hydrogen and dust of various sizes in extragalactic star-forming regions are considered, based on observational data from the Spitzer and Herschel infrared space telescopes, the Very Large Array (atomic hydrogen emission) and IRAM (CO emission). The source sample consists of approximately 300 star-forming regions in 11 nearby galaxies. Aperture photometry has been applied to measure the fluxes in eight infrared bands (3.6, 4.5, 5.8, 8, 24, 70, 100, and 160μ\mum), the atomic hydrogen (21cm) line and CO (2--1) lines. The parameters of the dust in the starforming regions were determined via synthetic-spectra fitting, such as the total dust mass, the fraction of polycyclic aromatic hydrocarbons (PAHs), etc. Comparison of the observed fluxes with the measured parameters shows that the relationships between atomic hydrogen, molecular hydrogen, and dust are different in low- and high-metallicity regions. Low-metallicity regions contain more atomic gas, but less molecular gas and dust, including PAHs. The mass of dust constitutes about 1%1\% of the mass of molecular gas in all regions considered. Fluxes produced by atomic and molecular gas do not correlate with the parameters of the stellar radiation, whereas the dust fluxes grow with increasing mean intensity of stellar radiation and the fraction of enhanced stellar radiation. The ratio of the fluxes at 8 and 24μ\mum, which characterizes the PAH content, decreases with increasing intensity of the stellar radiation, possibly indicating evolutionary variations of the PAH content. The results confirm that the contribution of the 24μ\mum emission to the total IR luminosity of extragalactic star-forming regions does not depend on the metallicity.Comment: Published in Astronomy Reports, 2017, vol. 61, issue

    Methanol in W3(H2O) and Surrounding Regions

    Full text link
    We present the results of an interferometric study of 38 millimeter-wave lines of CH3OH in the region around the water maser source W3(H2O) and a region extending about 30" to the south and west of the hydroxyl maser source W3(OH). The methanol emitting region around W3(H2O) has an extent of 2.0" x 1.2" (4400 x 2600 AU). The density is of order 1.e7 cm-3, sufficient to thermalize most of the methanol lines. The kinetic temperature is approximately 140 K and the methanol fractional abundance greater than 1.e-6, indicative of a high degree of grain mantle evaporation. The W3(H2O) source contains sub-structure, with peaks corresponding to the TW source and Wyrowski's B/C, separated by 2500 AU in projection. The kinematics are consistent with these being distinct protostellar cores in a wide binary orbit and a dynamical mass for the region of a few tens of Mo. The extended methanol emission to the southwest of W3(OH) is seen strongly only from the lowest excitation lines and from lines known elsewhere to be class I methanol masers, namely the 84.5 GHz 5(-1)-4(0)E and 95.2 GHz 8(0)-7(1)A+ lines. Within this region there are two compact clumps, which we denote as swA and swB, each about 15" (0.16 pc projected distance) away from W3(OH). Excitation analysis of these clumps indicates the presence of lines with inverted populations but only weak amplification. The sources swA and swB appear to have kinetic temperatures of order 50-100 K and densities of order 1.e5 - 1.e6 cm-3. The methanol fractional abundance for the warmer clump is of order 1.e-7, suggestive of partial grain mantle evaporation. The clumping occurs on mass scales of order 1 Mo.Comment: 28 pages including 6 figures and 4 tables, accepted by Ap

    The quality of gosling meat depending on the level of lithium in mixed fodders

    Get PDF
    Micronutrients are an important component of a complete poultry feeding. Current detailed feeding standards provide guaranteed feed additives for farm poultry of the microelement complex. Among the normalized microelements there is no lithium, which according to the classification based on biological role for living organisms belongs to the group of conditionally essential elements. The purpose of the study was to investigate the effect of various doses of lithium in compound feed on the chemical composition and toxicological and biological parameters of caterpillar meat. The effect of additives of different doses of lithium (0.05 mg/kg, 0.10 and 0.15 mg/kg) in compound forages on the quality and safety of the products of slaughter of 70-day gosling was studied. The studies were conducted on gosling of the Legart breed. Feeding of gosling from day to 70 days of age was carried out by full-feed compound feeds. The birds of the experimental groups were additionally injected with lithium in the feed, mg/kg: the second group was 0.05; third – 0.10 and fourth – 0.15. The gosling of the control group did not receive lithium. Analysis of the results of the studies revealed differences between the control and experimental groups in the chemical composition of the muscular tissue of the gosling in favor of the latter. It was found that the introduction of lithium compound feed had a positive effect on the deposition of dry matter, protein and fat in the gosling of the experimental groups, which contributed to its increased energy and biological value. The best indicators of meat quality were in young animals, which during the growing period were fed compound feeds enriched with lithium at the rate of 0.1 and 0.15 mg/kg

    Positive Measure Spectrum for Schroedinger Operators with Periodic Magnetic Fields

    Full text link
    We study Schroedinger operators with periodic magnetic field in Euclidean 2-space, in the case of irrational magnetic flux. Positive measure Cantor spectrum is generically expected in the presence of an electric potential. We show that, even without electric potential, the spectrum has positive measure if the magnetic field is a perturbation of a constant one.Comment: 17 page
    corecore