47 research outputs found

    Layer-by-layer laser synthesis of Cu–Al–Ni intermetallic compounds and shape memory effect

    Get PDF
    Published ArticleWe have studied conditions for the synthesis of intermetallic phases in the Cu–Al–Ni system by selective laser sintering/melting, in particular by heating a powder mixture to 300°C. The effects of laser synthesis and heating on the microstructure of the intermetallic phases in the samples obtained have been studied using electron microscopy, optical metallography, and X-ray diffraction analysis. The results demonstrate high sinterability of stoichiometric mixtures. Resistivity measurements indicate that the samples exhibit a shape memory effect. We discuss the feasibility of producing biomicroelectromechanical systems using layerby- layer synthesis

    Phase Formation, Thermal Stability and Mechanical Properties of a Cu-Al-Ni-Mn Shape Memory Alloy Prepared by Selective Laser Melting

    Get PDF
    Selective laser melting (SLM) is an additive manufacturing process used to produce parts with complex geometries layer by layer. This rapid solidification method allows fabricating samples in a non-equilibrium state and with refined microstructure. In this work, this method is used to fabricate 3 mm diameter rods of a Cu-based shape memory alloy. The phase formation, thermal stability and mechanical properties were investigated and correlated. Samples with a relative density higher than 92% and without cracks were obtained. A single monoclinic martensitic phase was formed with average grain size ranging between 28 to 36 μm. The samples exhibit a reverse martensitic transformation temperature around 106 ± 2 °C and a large plasticity in compression (around 15±1%) with a typical “double-yielding” behaviour

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA
    corecore