2,010 research outputs found

    New exact solution of the one dimensional Dirac Equation for the Woods-Saxon potential within the effective mass case

    Full text link
    We study the one-dimensional Dirac equation in the framework of a position dependent mass under the action of a Woods-Saxon external potential. We find that constraining appropriately the mass function it is possible to obtain a solution of the problem in terms of the hypergeometric function. The mass function for which this turns out to be possible is continuous. In particular we study the scattering problem and derive exact expressions for the reflection and transmission coefficients which are compared to those of the constant mass case. For the very same mass function the bound state problem is also solved, providing a transcendental equation for the energy eigenvalues which is solved numerically.Comment: Version to match the one which has been accepted for publication by J. Phys. A: Math. Theor. Added one figure, several comments and few references. (24 pages and 7 figures

    Del chino al catalán: guía de viaje

    Get PDF
    Ressenya de l'obra: Casas-Tost, Helena; Rovira-Esteva, Sara (cur.) Guia d’estil per al tractament de mots xinesos en català [en línia]. Barcelona: Generalitat de Catalunya. Departament de Cultura. Direcció General de Política Lingüística, 2015. (Biblioteca Tècnica de Política Lingüística; 13) http://gencat.cat/llengua/BTPL/xinesReseña de la obra: Casas-Tost, Helena; Rovira-Esteva, Sara (cur.) Guia d’estil per al tractament de mots xinesos en català [en línia]. Barcelona: Generalitat de Catalunya. Departament de Cultura. Direcció General de Política Lingüística, 2015. (Biblioteca Tècnica de Política Lingüística; 13) http://gencat.cat/llengua/BTPL/xine

    Gas Phase Protein Folding Triggered by Proton Stripping Generates Inside-Out Structures: A Molecular Dynamics Simulation Study.

    Get PDF
    The properties of electrosprayed protein ions continue to be enigmatic, owing to the absence of high-resolution structure determination methods in the gas phase. There is considerable evidence that under properly optimized conditions these ions preserve solution-like conformations and interactions. However, it is unlikely that these solution-like conformers represent the intrinsic structural preferences of gaseous proteins. In an effort to uncover what such intrinsically preferred conformers might look like, we performed molecular dynamics (MD) simulations of gaseous ubiquitin. Our work was inspired by recent gas phase experiments, where highly extended 13+ ubiquitin ions were transformed to compact 3+ species by proton stripping (Laszlo, K. J.; Munger, E. B.; Bush, M. F. J. Am. Chem. Soc. 2016, 138, 9581-9588). Our simulations covered several microseconds and used a mobile-proton algorithm to account for the fact that a H+ in gaseous proteins can migrate between different titratable sites. Proton stripping caused folding of ubiquitin into heterogeneous inside-out structures. The hydrophilic core of these conformers was stabilized by charge-charge and polar interactions, while hydrophobic residues were located on the protein surface. Collision cross sections of these MD structures were in good agreement with experimental results. The inside-out structures generated during gas phase folding are in striking contrast to the solution behavior which is dominated by the hydrophobic effect, i.e., the tendency to bury hydrophobic side chains in the core (instead of exposing them to the surface). We do not dispute that native-like proteins can be transferred into the gas phase as kinetically trapped species. However, those metastable conformers do not represent the intrinsic structural preferences of gaseous proteins. Our work for the first time provides detailed insights into the properties of intrinsically preferred gas phase conformers, and we unequivocally find them to have inside-out architectures

    Any l-state solutions of the Woods-Saxon potential in arbitrary dimensions within the new improved quantization rule

    Full text link
    The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in DD dimensions are obtained within the new improved quantization rule for all ll-states. The Pekeris approximation is used to deal with the centrifugal term in the effective Woods-Saxon potential. The inter-dimensional degeneracies for various orbital quantum number ll and dimensional space DD are studied. The solutions for the Hulth\'{e}n potential, the three-dimensional (D=3), the % s-wave (l=0l=0) and the cases are briefly discussed.Comment: 15 page

    Method and apparatus for autonomous, in-receiver prediction of GNSS ephemerides

    Get PDF
    Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquisition of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parameterized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquisition

    Interrogating the Quaternary Structure of Noncanonical Hemoglobin Complexes by Electrospray Mass Spectrometry and Collision-Induced Dissociation.

    Get PDF
    Various activation methods are available for the fragmentation of gaseous protein complexes produced by electrospray ionization (ESI). Such experiments can potentially yield insights into quaternary structure. Collision-induced dissociation (CID) is the most widely used fragmentation technique. Unfortunately, CID of protein complexes is dominated by the ejection of highly charged monomers, a process that does not yield any structural insights. Using hemoglobin (Hb) as a model system, this work examines under what conditions CID generates structurally informative subcomplexes. Native ESI mainly produced tetrameric Hb ions. In addition, noncanonical hexameric and octameric complexes were observed. CID of all these species [(αβ)2, (αβ)3, and (αβ)4] predominantly generated highly charged monomers. In addition, we observed hexamer → tetramer + dimer dissociation, implying that hexamers have a tetramer··dimer architecture. Similarly, the observation of octamer → two tetramer dissociation revealed that octamers have a tetramer··tetramer composition. Gas-phase candidate structures of Hb assemblies were produced by molecular dynamics (MD) simulations. Ion mobility spectrometry was used to identify the most likely candidates. Our data reveal that the capability of CID to produce structurally informative subcomplexes depends on the fate of protein-protein interfaces after transfer into the gas phase. Collapse of low affinity interfaces conjoins the corresponding subunits and favors CID via monomer ejection. Structurally informative subcomplexes are formed only if low affinity interfaces do not undergo a major collapse. However, even in these favorable cases CID is still dominated by monomer ejection, requiring careful analysis of the experimental data for the identification of structurally informative subcomplexes

    Investigation of fatigue damage growth and self-heating behaviour of cross-ply laminates using simulation-driven dynamic test

    Get PDF
    Structural integrity of aerospace assets is paramount for both the safety and economy of aviation industry. The introduction of composites into the design of aero-structures generated several economic benefits but also led to several challenges, including fatigue damage growth and self-heating behaviour. Fatigue of metals is widely managed by calculations of damage accumulation and prediction of residual life. These techniques do not always apply to the fatigue of composites, where the onset and propagation of damage are still under investigation. Furthermore, vibration-induced fatigue is even less understood because of a handful of failure criteria available and, also, because it is biased by the self-heating conditions of the material itself. The authors have underpinned one failure criterion for vibration fatigue and mapped that against self-heating and environmental temperatures. Despite the advances, several research questions were left open because of the complex multiphysics behaviour of fatigue which outreached the experimental capacity. Therefore, this research suggests a Simulation-Driven Dynamic Test (SDDT) framework that deconstructs vibration fatigue experiments into step-wise steady-state analyses. This novel approach will enable (a) investigating the failure mode mixity of the underlying failure criterion, and (b) simulating the surface temperature during the delamination growth under vibration conditions.</p

    Scattering states of a particle, with position-dependent mass, in a PT{\cal{PT}} symmetric heterojunction

    Full text link
    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian PT{\cal{PT}} symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian PT{\cal{PT}} symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.Comment: 12 pages, including 6 figures; Journal of Physics A : Math. Theor. (2012
    • …
    corecore