75 research outputs found

    Kac-Moody Symmetries of Ten-dimensional Non-maximal Supergravity Theories

    Full text link
    A description of the bosonic sector of ten-dimensional N=1 supergravity as a non-linear realisation is given. We show that if a suitable extension of this theory were invariant under a Kac-Moody algebra, then this algebra would have to contain a rank eleven Kac-Moody algebra, that can be identified to be a particular real form of very-extended D_8. We also describe the extension of N=1 supergravity coupled to an abelian vector gauge field as a non-linear realisation, and find the Kac-Moody algebra governing the symmetries of this theory to be very-extended B_8. Finally, we discuss the related points for the N=1 supergravity coupled to an arbitrary number of abelian vector gauge fields

    A class of Lorentzian Kac-Moody algebras

    Full text link
    We consider a natural generalisation of the class of hyperbolic Kac-Moody algebras. We describe in detail the conditions under which these algebras are Lorentzian. We also construct their fundamental weights, and analyse whether they possess a real principal so(1,2) subalgebra. Our class of algebras include the Lorentzian Kac-Moody algebras that have recently been proposed as symmetries of M-theory and the closed bosonic string.Comment: 40 pages TeX, 5 eps-figure

    Curvature corrections and Kac-Moody compatibility conditions

    Get PDF
    We study possible restrictions on the structure of curvature corrections to gravitational theories in the context of their corresponding Kac--Moody algebras, following the initial work on E10 in Class. Quant. Grav. 22 (2005) 2849. We first emphasize that the leading quantum corrections of M-theory can be naturally interpreted in terms of (non-gravity) fundamental weights of E10. We then heuristically explore the extent to which this remark can be generalized to all over-extended algebras by determining which curvature corrections are compatible with their weight structure, and by comparing these curvature terms with known results on the quantum corrections for the corresponding gravitational theories.Comment: 27 page

    Sugawara-type constraints in hyperbolic coset models

    Full text link
    In the conjectured correspondence between supergravity and geodesic models on infinite-dimensional hyperbolic coset spaces, and E10/K(E10) in particular, the constraints play a central role. We present a Sugawara-type construction in terms of the E10 Noether charges that extends these constraints infinitely into the hyperbolic algebra, in contrast to the truncated expressions obtained in arXiv:0709.2691 that involved only finitely many generators. Our extended constraints are associated to an infinite set of roots which are all imaginary, and in fact fill the closed past light-cone of the Lorentzian root lattice. The construction makes crucial use of the E10 Weyl group and of the fact that the E10 model contains both D=11 supergravity and D=10 IIB supergravity. Our extended constraints appear to unite in a remarkable manner the different canonical constraints of these two theories. This construction may also shed new light on the issue of `open constraint algebras' in traditional canonical approaches to gravity.Comment: 49 page

    Duality Symmetries and G^{+++} Theories

    Full text link
    We show that the non-linear realisations of all the very extended algebras G^{+++}, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G_2^{+++} and we argue that the non-linear realisation of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G^{+++} algebra.Comment: 35 pages. v2: 2 appendices added, other minor corrections. v3: tables corrected, other minor changes, one appendix added, refs. added. Version published in Class. Quant. Gra

    Time-like T-duality algebra

    Full text link
    When compactifying M- or type II string-theories on tori of indefinite space-time signature, their low energy theories involve sigma models on E_{n(n)}/H_n, where H_n is a not necessarily compact subgroup of E_{n(n)} whose complexification is identical to the complexification of the maximal compact subgroup of E_{n(n)}. We discuss how to compute the group H_n. For finite dimensional E_{n(n)}, a formula derived from the theory of real forms of E_n algebra's gives the possible groups immediately. A few groups that have not appeared in the literature are found. For n=9,10,11 we compute and describe the relevant real forms of E_n and H_n. A given H_n can correspond to multiple signatures for the compact torus. We compute the groups H_n for all compactifications of M-, M*-, and M'-theories, and type II-, II*- and II'-theories on tori of arbitrary signature, and collect them in tables that outline the dualities between them. In an appendix we list cosets G/H, with G split and H a subgroup of G, that are relevant to timelike toroidal compactifications and oxidation of theories with enhanced symmetries.Comment: LaTeX, 37 pages, 1 eps-figure, uses JHEP.cls; v2. corrected typo's in tables 16 and 17, minor changes to tex

    Massive Type II in Double Field Theory

    Full text link
    We provide an extension of the recently constructed double field theory formulation of the low-energy limits of type II strings, in which the RR fields can depend simultaneously on the 10-dimensional space-time coordinates and linearly on the dual winding coordinates. For the special case that only the RR one-form of type IIA carries such a dependence, we obtain the massive deformation of type IIA supergravity due to Romans. For T-dual configurations we obtain a `massive' but non-covariant formulation of type IIB, in which the 10-dimensional diffeomorphism symmetry is deformed by the mass parameter.Comment: 21 page

    E_{11} origin of Brane charges and U-duality multiplets

    Full text link
    We derive general equations which determine the decomposition of the G^{+++} multiplet of brane charges into the sub-algebras that arise when the non-linearly realised G^{+++} theory is dimensionally reduced on a torus. We apply this to calculate the low level E_8 multiplets of brane charges that arise when the E_{8}^{+++}, or E_{11}, non-linearly realised theory is dimensionally reduced to three dimensions on an eight dimensional torus. We find precise agreement with the U-duality multiplet of brane charges previously calculated, thus providing a natural eleven dimensional origin for the "mysterious" brane charges found that do not occur as central charges in the supersymmetry algebra. We also discuss the brane charges in nine dimensions and how they arise from the IIA and IIB theories.Comment: 30 pages, plain te

    Diagrammar and metamorphosis of coset symmetries in dimensionally reduced type IIB supergravity

    Full text link
    Studying the reduction of type IIB supergravity from ten to three space-time dimensions we describe the metamorphosis of Dynkin diagram for gravity line "caterpillar" into a type IIB supergravity "dragonfly" that is triggered by inclusion of scalars and antisymmetric tensor fields. The final diagram corresponds to type IIB string theory E8 global symmetry group which is the subgroup of the conjectured E11 hidden symmetry group. Application of the results for getting the type IIA/IIB T-duality rules and for searching for type IIB vacua solutions is considered.Comment: 9 pp, 7 figs, LATEX; to be published in JETP Let

    E10 and SO(9,9) invariant supergravity

    Full text link
    We show that (massive) D=10 type IIA supergravity possesses a hidden rigid SO(9,9) symmetry and a hidden local SO(9) x SO(9) symmetry upon dimensional reduction to one (time-like) dimension. We explicitly construct the associated locally supersymmetric Lagrangian in one dimension, and show that its bosonic sector, including the mass term, can be equivalently described by a truncation of an E10/K(E10) non-linear sigma-model to the level \ell<=2 sector in a decomposition of E10 under its so(9,9) subalgebra. This decomposition is presented up to level 10, and the even and odd level sectors are identified tentatively with the Neveu--Schwarz and Ramond sectors, respectively. Further truncation to the level \ell=0 sector yields a model related to the reduction of D=10 type I supergravity. The hyperbolic Kac--Moody algebra DE10, associated to the latter, is shown to be a proper subalgebra of E10, in accord with the embedding of type I into type IIA supergravity. The corresponding decomposition of DE10 under so(9,9) is presented up to level 5.Comment: 1+39 pages LaTeX2e, 2 figures, 2 tables, extended tables obtainable by downloading sourc
    • …
    corecore