8,134 research outputs found
High expression of cannabinoid receptor 2 on cytokine-induced killer cells and multiple myeloma cells
Multiple myeloma (MM) is characterized by aberrant bone marrow plasma cell (PC) proliferation and is one of the most common hematological malignancies. The potential effect of cannabinoids on the immune system and hematological malignancies has been poorly characterized. Cannabidiol (CBD) may be used to treat various diseases. CBD is known to exert immunomodulatory effects through the activation of cannabinoid receptor 2 (CB2), which is expressed in high levels in the hematopoietic system. Cytokine-induced killer (CIK) cells are a heterogeneous population of polyclonal T lymphocytes obtained via ex vivo sequential incubation of peripheral blood mononuclear cells (PBMCs) with interferon-γ (IFN-γ), anti CD3 monoclonal antibody, and IL-2. They are characterized by the expression of CD3+ and CD56+, which are surface markers common to T lymphocytes and natural killer (NK) cells. CIK cells are mainly used in hematological patients who suffer relapse after allogeneic transplantation. Here, we investigated their antitumor effect in combination with pure cannabidiol in KMS-12 MM cells by lactate dehydrogenase LDH cytotoxicity assay, CCK-8 assay, and flow cytometry analysis. The surface and intracellular CB2 expressions on CIK cells and on KMS-12 and U-266 MM cell lines were also detected by flow cytometry. Our findings confirm that the CB2 receptor is highly expressed on CIK cells as well as on MM cells. CBD was able to decrease the viability of tumor cells and can have a protective role for CIK cells. It also inhibits the cytotoxic activity of CIKs against MM at high concentrations, so in view of a clinical perspective, it has to be considered that the lower concentration of 1 ”M can be used in combination with CIK cells. Further studies will be required to address the mechanism of CBD modulation of CIK cells in more detail
ESR Modes in CsCuCl3 in Pulsed Magnetic Fields
We present ESR results for 35-134GHz in the antiferromagnet CsCuCl3 at
T=1.5K. The external field is applied perpendicular to the hexagonal c-axis.
With our pulsed field facility we reach 50T an unprecedented field for low
temperature ESR. We observe strong resonances up to fields close to the
ferromagnetic region of ~30T. These results are discussed in a model for
antiferromagnetic modes in a two-dimensional frustrated triangular spin system.Comment: 3 pages, RevTeX, 3 figures. to be published in Solid State
Communication
Spin Coulomb drag in the two-dimensional electron liquid
We calculate the spin-drag transresistivity
in a two-dimensional electron gas at temperature in the random phase
approximation. In the low-temperature regime we show that, at variance with the
three-dimensional low-temperature result [], the spin transresistivity of a two-dimensional {\it spin unpolarized}
electron gas has the form . In the
spin-polarized case the familiar form is
recovered, but the constant of proportionality diverges logarithmically as
the spin-polarization tends to zero. In the high-temperature regime we obtain
(where
is the effective Rydberg energy) {\it independent} of the density.
Again, this differs from the three-dimensional result, which has a logarithmic
dependence on the density. Two important differences between the spin-drag
transresistivity and the ordinary Coulomb drag transresistivity are pointed
out: (i) The singularity at low temperature is smaller, in the Coulomb
drag case, by a factor where is the Fermi wave vector and
is the separation between the layers. (ii) The collective mode contribution
to the spin-drag transresistivity is negligible at all temperatures. Moreover
the spin drag effect is, for comparable parameters, larger than the ordinary
Coulomb drag effect.Comment: 6 figures; various changes; version accepted for publicatio
A Low Dose of Pure Cannabidiol Is Sufficient to Stimulate the Cytotoxic Function of CIK Cells without Exerting the Downstream Mediators in Pancreatic Cancer Cells
Despite numerous studies conducted over the past decade, the exact role of the cannabinoid system in cancer development remains unclear. Though research has focused on two cannabinoid receptors (CB1, CB2) activated by most cannabinoids, CB2 holds greater attention due to its expression in cells of the immune system. In particular, cytokine-induced killer cells (CIKs), which are pivotal cytotoxic immunological effector cells, express a high-level of CB2 receptors. Herein, we sought to investigate whether inducing CIK cells with cannabidiol can enhance their cytotoxicity and if there are any possible counter effects in its downstream cascade of phosphorylated p38 and CREB using a pancreatic ductal adenocarcinoma cell line (PANC-1). Our results showed that IL-2 modulates primarily the expression of the CB2 receptor on CIK cells used during ex vivo CIK expansion. The autophagosomal-associated scaffold protein p62 was found to co-localize with CB2 receptors in CIK cells and the PANC-1 cell line. CIK cells showed a low level of intracellular phospho-p38 and, when stimulated with cannabidiol (CBD), a donor specific variability in phospho-CREB. CBD significantly decreases the viability of PANC-1 cells presumably by increasing the cytotoxicity of CIK cells. Taken together, in our preclinical in vitro study, we propose that a low effective dose of CBD is sufficient to stimulate the cytotoxic function of CIK without exerting any associated mediator. Thus, the combinatorial approach of non-psychogenic CBD and CIK cells appears to be safe and can be considered for a clinical perspective in pancreatic cancer
Electron Spin Injection at a Schottky Contact
We investigate theoretically electrical spin injection at a Schottky contact
between a spin-polarized electrode and a non-magnetic semiconductor. Current
and electron density spin-polarizations are discussed as functions of barrier
energy and semiconductor doping density. The effect of a spin-dependent
interface resistance that results from a tunneling region at the
contact/semiconductor interface is described. The model can serve as a guide
for designing spin-injection experiments with regard to the interface
properties and device structure.Comment: 4 pages, 4 figure
Integrative analysis of key candidate genes and signaling pathways in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy by bioinformatics
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), the first immune checkpoint to be targeted clinically, has provided an effective treatment option for various malignancies. However, the clinical advantages associated with CTLA-4 inhibitors can be offset by the potentially severe immune-related adverse events (IRAEs), including autoimmune thyroid dysfunction. To investigate the candidate genes and signaling pathways involving in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy, integrated differentially expressed genes (DEGs) were extracted from the intersection of genes from Gene Expression Omnibus (GEO) datasets and text mining. The functional enrichment was performed by gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network, module enrichment, and hub gene identification were constructed and visualized by the online Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. A total of 22 and 17 integrated human DEGs in hypothyroidism and hyperthyroidism group related to anti-CTLA-4 therapy were identified, respectively. Functional enrichment analysis revealed 24 GO terms and 1 KEGG pathways in the hypothyroid group and 21 GO terms and 2 KEGG pathways in the hyperthyroid group. After PPI network construction, the top five hub genes associated with hypothyroidism were extracted, including ALB, MAPK1, SPP1, PPARG, and MIF, whereas those associated with hyperthyroidism were ALB, FCGR2B, CD44, LCN2, and CD74. The identification of the candidate key genes and enriched signaling pathways provides potential biomarkers for autoimmune thyroid dysfunction related to anti-CTLA-4 therapy and might contribute to the future diagnosis and management of IRAEs for cancer patients
FOXP3 Inhibitory Peptide P60 Increases Efficacy of Cytokine-induced Killer Cells against Renal and Pancreatic Cancer Cells
Background/Aim: Cytokine-induced killer (CIK) cells are ex vivo expanded major histocompatibility complex (MHC)-unrestricted cytotoxic cells with promising effects against a variety of cancer types. Regulatory T-cells (T-reg) have been shown to reduce the effectiveness of CIK cells against tumor cells. Peptide P60 has been shown to inhibit the immunosuppressive functions of T-regs. This study aimed at examining the effect of p60 on CIK cells efficacy against renal and pancreatic cancer cells. Materials and Methods: The effect of P60 on CIK cytotoxicity was examined using flow cytometry, WST-8-based cell viability assay and interferon Îł (IFNÎł) ELISA. Results: P60 treatment resulted in a significant decrease in the viability of renal and pancreatic cancer cell lines co-cultured with CIK cells. No increase in IFNÎł secretion from CIK cells was detected following treatment with P60. P60 caused no changes in the distribution of major effector cell populations in CIK cell cultures. Conclusion: P60 may potentiate CIK cell cytotoxicity against tumor cells
Presence of the transmembrane protein neuropilin in cytokine-induced killer cells
Background/Aim: Cytokine-induced killer (CIK) cells are a heterogenous population of immune cells showing promising applications in immunotherapeutic cancer treatment. Neuropilin (NRP) proteins have been proven to play an important role in cancer development and prognosis. In this study, CIK cells were tested for expression of NRPs, transmembrane proteins playing a role in the proliferation and survival of cancer cells. Materials and Methods: CIK cells were analyzed at different time points via flow cytometry and quantitative real-time polymerase chain reaction for neuropilin expression. Results: Phenotyping results showed CIK cells having developed properly, and low levels of NRP2 were detected. On the other hand, no NRP1 expression was found. Two cancer cell lines were tested by flow cytometry: A549 cells expressed NRP1 and NRP2; U251-MG cells expressed high amounts of NRP2. CIK cell showed low levels of NRP2 expression on day 14. Conclusion: The presence of NRP2, but not NRP1, was shown for CIK cells. Recognizing NRP2 in CIK cells might help to improve CIK cell cytotoxicity
Spin diffusion and injection in semiconductor structures: Electric field effects
In semiconductor spintronic devices, the semiconductor is usually lightly
doped and nondegenerate, and moderate electric fields can dominate the carrier
motion. We recently derived a drift-diffusion equation for spin polarization in
the semiconductors by consistently taking into account electric-field effects
and nondegenerate electron statistics and identified a high-field diffusive
regime which has no analogue in metals. Here spin injection from a ferromagnet
(FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying
this spin drift-diffusion equation to several typical injection structures such
as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field
regime spin injection from a ferromagnet into a semiconductor is enhanced by
several orders of magnitude. For injection structures with interfacial
barriers, the electric field further enhances spin injection considerably. In
FM/NS/FM structures high electric fields destroy the symmetry between the two
magnets at low fields, where both magnets are equally important for spin
injection, and spin injection becomes locally determined by the magnet from
which carriers flow into the semiconductor. The field-induced spin injection
enhancement should also be insensitive to the presence of a highly doped
nonmagnetic semiconductor (NS) at the FM interface, thus FM/NS/NS
structures should also manifest efficient spin injection at high fields.
Furthermore, high fields substantially reduce the magnetoresistance observable
in a recent experiment on spin injection from magnetic semiconductors
- âŠ