43,767 research outputs found
Partitioning technique for a discrete quantum system
We develop the partitioning technique for quantum discrete systems. The graph
consists of several subgraphs: a central graph and several branch graphs, with
each branch graph being rooted by an individual node on the central one. We
show that the effective Hamiltonian on the central graph can be constructed by
adding additional potentials on the branch-root nodes, which generates the same
result as does the the original Hamiltonian on the entire graph. Exactly
solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure
Custodial bulk Randall-Sundrum model and B->K* l+ l'-
The custodial Randall-Sundrum model based on SU(2)_L X SU(2)_R X U(1)_(B-L)
generates new flavor-changing-neutral-current (FCNC) phenomena at tree level,
mediated by Kaluza-Klein neutral gauge bosons. Based on two natural assumptions
of universal 5D Yukawa couplings and no-cancellation in explaining the observed
standard model fermion mixing matrices, we determine the bulk Dirac mass
parameters. Phenomenological constraints from lepton-flavor-violations are also
used to specify the model. From the comprehensive study of B->K* l+ l'-, we
found that only the B->K*ee decay has sizable new physics effects. The zero
value position of the forward-backward asymmetry in this model is also
evaluated, with about 5% deviation from the SM result. Other effective
observables are also suggested such as the ratio of two differential (or
partially integrated) decay rates of B->K*ee and B->K*mu mu. For the first KK
gauge boson mass of M_A^(1)=2-4 TeV, we can have about 10-20% deviation from
the SM results.Comment: references added with minor change
Bunching Transitions on Vicinal Surfaces and Quantum N-mers
We study vicinal crystal surfaces with the terrace-step-kink model on a
discrete lattice. Including both a short-ranged attractive interaction and a
long-ranged repulsive interaction arising from elastic forces, we discover a
series of phases in which steps coalesce into bunches of n steps each. The
value of n varies with temperature and the ratio of short to long range
interaction strengths. We propose that the bunch phases have been observed in
very recent experiments on Si surfaces. Within the context of a mapping of the
model to a system of bosons on a 1D lattice, the bunch phases appear as quantum
n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
Schwinger-Boson Mean-Field Theory of Mixed-Spin Antiferromagnet
The Schwinger-boson mean-field theory is used to study the three-dimensional
antiferromagnetic ordering and excitations in compounds , a large
family of quasi-one-dimensional mixed-spin antiferromagnet. To investigate
magnetic properties of these compounds, we introduce a three-dimensional
mixed-spin antiferromagnetic Heisenberg model based on experimental results for
the crystal structure of . This model can explain the experimental
discovery of coexistence of Haldane gap and antiferromagnetic long-range order
below N\'{e}el temperature. Properties such as the low-lying excitations,
magnetizations of and rare-earth ions, N\'{e}el temperatures of different
compounds, and the behavior of Haldane gap below the N\'{e}el temperature are
investigated within this model, and the results are in good agreement with
neutron scattering experiments.Comment: 12 pages, 6 figure
Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13
The major solar event on 2006 December 13 is characterized by the
approximately simultaneous occurrence of a heap of hot ejecta, a great
two-ribbon flare and an extended Earth-directed coronal mass ejection. We
examine the magnetic field and sunspot evolution in active region NOAA AR
10930, the source region of the event, while it transited the solar disk centre
from Dec. 10 to Dec. 13. We find that the obvious changes in the active region
associated with the event are the development of magnetic shear, the appearance
of ephemeral regions and fast rotation of a smaller sunspot. Around the area of
the magnetic neutral line of the active region, interaction between the fast
rotating sunspot and the ephemeral regions triggers continual brightening and
finally the major flare. It is indicative that only after the sunspot rotates
up to 200 does the major event take place. The sunspot rotates at
least 240 about its centre, the largest sunspot rotation angle which
has been reported.Comment: 4 pages, 6 figures, ApJ Letters inpres
Real-Time Forcast Model Analysis of Daily Average Building Load for a Thermal Storage System Control
Thermal storage systems were originally designed to shift the on-peak cooling production to off-peak cooling production to reduce the on-peak demand. Based on the current electricity charging structure, the reduction of both on-peak and off-peak demands is becoming an exceedingly important issue. Reduction of both on-peak and off-peak demands can also extend the life span and defer or eliminate the replacement of power transformers due to potential shortage of building power capacity with anticipated equipment load increases. The next day daily average electricity demand is a critical set point to operate chillers and associated pumps at the appropriate time. For this paper, a mathematic analysis was conducted for annual daily average cooling of a building and three real-time building load forecasting models were developed. They are first-order autogressive model, random walk model and linear regression model. Finally, the comparison of results show the random walk model provides the best forecast
Lithium Depletion Boundary in a Pre-Main Sequence Binary System
A lithium depletion boundary is detected in HIP 112312 (GJ 871.1 A and B), a
\~12 Myr old pre-main sequence binary system. A strong (EW 300 mA) Li 6708 A
absorption feature is seen at the secondary (~M4.5) while no Li 6708 A feature
is detected from the primary (~M4). The physical companionship of the two stars
is confirmed from common proper motions. Current theoretical pre-main sequence
evolutionary models cannot simultaneously match the observed colors,
brightnesses, and Li depletion patterns of this binary system. At the age upper
limit of 20 Myr, contemporary theoretical evolutionary models predict too slow
Li depletion. If true Li depletion is a faster process than predicted by
theoretical models, ages of open clusters (Pleiades, alpha Persei, and IC 2391)
estimated from the Li depletion boundary method are all overestimated. Because
of the importance of the open cluster age scale, development of self-consistent
theoretical models to match the HIP 112312 data is desirable.Comment: Accepted in ApJL. 5 pages total (3 tables, 3 figures
- …