We develop the partitioning technique for quantum discrete systems. The graph
consists of several subgraphs: a central graph and several branch graphs, with
each branch graph being rooted by an individual node on the central one. We
show that the effective Hamiltonian on the central graph can be constructed by
adding additional potentials on the branch-root nodes, which generates the same
result as does the the original Hamiltonian on the entire graph. Exactly
solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure