877,879 research outputs found

    Back reaction of vacuum and the renormalization group flow from the conformal fixed point

    Full text link
    We consider the GUT-like model with two scalar fields which has infinitesimal deviation from the conformal invariant fixed point at high energy region. In this case the dominating quantum effect is the conformal trace anomaly and the interaction between the anomaly-generated propagating conformal factor of the metric and the usual dimensional scalar field. This interaction leads to the renormalization group flow from the conformal point. In the supersymmetric conformal invariant model such an effect produces a very weak violation of sypersymmetry at lower energies.Comment: 15 pages, LaTex, ten figures, uuencoded fil

    Analysis of the second order exchange self energy of a dense electron gas

    Full text link
    We investigate the evaluation of the six-fold integral representation for the second order exchange contribution to the self energy of a three dimensional electron gas at the Fermi surface.Comment: 6 page

    Quantization of bosonic fields with two mass and spin states

    Full text link
    We investigate bosonic fields possessing two mass and spin states. The density matrix in the first order formalism is obtained. The quantization of fields in the first order formulation is performed and propagators are found.Comment: 9 page

    Can the flyby anomaly be attributed to earth-bound dark matter?

    Full text link
    We make preliminary estimates to assess whether the recently reported flyby anomaly can be attributed to dark matter interactions. We consider both elastic and exothermic inelastic scattering from dark matter constituents; for isotropic dark matter velocity distributions, the former decrease, while the latter increase, the final flyby velocity. The fact that the observed flyby velocity anomaly shows examples with both positive and negative signs, requires the dominance of different dark matter scattering processes along different flyby trajectories. The magnitude of the observed anomalies requires dark matter densities many orders of magnitude greater than the galactic halo density. Such a large density could result from an accumulation cascade, in which the solar system-bound dark matter density is much higher than the galactic halo density, and the earth-bound density is much higher than the solar system-bound density. We discuss a number of strong constraints on the hypothesis of a dark matter explanation for the flyby anomaly. These require dark matter to be non-self-annihilating, with the dark matter scattering cross section on nucleons much larger, and the dark matter mass much lighter, than usually assumed.Comment: Latex, 21 pages. v3: substantially revised and expanded; v4: version to appear in Phys. Rev.

    A Four-Dimensional Theory for Quantum Gravity with Conformal and Nonconformal Explicit Solutions

    Get PDF
    The most general version of a renormalizable d=4d=4 theory corresponding to a dimensionless higher-derivative scalar field model in curved spacetime is explored. The classical action of the theory contains 1212 independent functions, which are the generalized coupling constants of the theory. We calculate the one-loop beta functions and then consider the conditions for finiteness. The set of exact solutions of power type is proven to consist of precisely three conformal and three nonconformal solutions, given by remarkably simple (albeit nontrivial) functions that we obtain explicitly. The finiteness of the conformal theory indicates the absence of a conformal anomaly in the finite sector. The stability of the finite solutions is investigated and the possibility of renormalization group flows is discussed as well as several physical applications.Comment: LaTeX, 18 pages, no figure

    On structure of effective action in four-dimensional quantum dilaton supergravity

    Get PDF
    A general structure of effective action in new chiral superfield model associated with N=1N=1, D=4D=4 supergravity is investigated. This model corresponds to finite quantum field theory and does not demand the regularization and renormalization at effective action calculation. It is shown that in local approximation the effective action is defined by two objects called general superfield effective lagrangian and chiral superfield effective lagrangian. A proper-time method is generalized for calculation of these two effective lagrangians in superfield manner. Power expansion of the effective action in supercovariant derivatives is formulated and the lower terms of such an expansion are calculated in explicit superfield form

    Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot

    Get PDF
    Magneto-polaronic effects are considered in electron transport through a single-level vibrating quantum dot subjected to a transverse (to the current flow) magnetic field. It is shown that the effects are most pronounced in the regime of sequential electron tunneling, where a polaronic blockade of the current at low temperatures and an anomalous temperature dependence of the magnetoconductance are predicted. In contrast, for resonant tunneling of polarons the peak conductance is not affected by the magnetic field.Comment: 7 pages, 2 figure

    Nonequilibrium evolution thermodynamics

    Full text link
    A new approach - nonequilibrium evolution thermodynamics, is compared with classical variant of Landau approachComment: 4 pages, 1 figur

    Correlated electronic structure, orbital-dependent correlations, and Lifshitz transition in tetragonal FeS

    Full text link
    Using density functional plus dynamical mean-field theory method (DFT+DMFT) with full self-consistency over the charge density, we study the effect of electronic correlations on the electronic structure, magnetic properties, orbital-dependent band renormalizations, and Fermi surface of the tetragonal phase of bulk FeS. We perform a direct structural optimization of the P4/nmmP_4/nmm crystal structure of paramagnetic FeS, with respect to the lattice constant aa and the internal coordinate zSz_\mathrm{S} of atom S. Our results show an anomalous sensitivity of the electronic structure and magnetic properties of FeS to fine details of its crystals structure. Upon expansion of the lattice volume, we observe a remarkable change of the electronic structure of FeS which is associated with a complete reconstruction of the Fermi surface topology (Lifshitz transition). This behavior is ascribed to a correlation-induced shift of the Van Hove singularity associated with the Fe t2t_2 orbitals at the MM point across the Fermi level. The Lifshitz phase transition is accompanied by a significant growth of local magnetic moments and emergence of strong orbital-selective correlations. It is seen as a pronounced anomaly (`kink') in the total energies upon expansion of the lattice, associated with a remarkable enhancement of compressibility. This behavior is accompanied by an orbital-dependent formation of local moments, a crossover from itinerant to localized orbital-selective moment behavior of the Fe 3d3d electrons. While exhibiting weak effective mass enhancement of the Fe 3d3d states m/m1.31.4m^*/m \sim 1.3-1.4, correlation effects reveal a strong impact on a position of the Van Hove singularity at the MM point, implying a complex interplay between electronic correlations and band structure effects in FeS
    corecore