7 research outputs found

    Extended LTA, TNF, LST1 and HLA Gene Haplotypes and Their Association with Rubella Vaccine-Induced Immunity

    Get PDF
    Recent studies have suggested the importance of HLA genes in determining immune responses following rubella vaccine. The telomeric class III region of the HLA complex harbors several genes, including lymphotoxin alpha (LTA), tumor necrosis factor (TNF) and leukocyte specific transcript -1 (LST1) genes, located between the class I B and class II DRB1 loci. Apart from HLA, little is known about the effect of this extended genetic region on HLA haplotypic backgrounds as applied to immune responses.We examined the association between immune responses and extended class I-class II-class III haplotypes among 714 healthy children after two doses of rubella vaccination. These extended haplotypes were then compared to the HLA-only haplotypes. The most significant association was observed between haplotypes extending across the HLA class I region, ten-SNP haplotypes, and the HLA class II region (i.e. A-C-B-LTA-TNF-LST1-DRB1-DQA1-DQB1-DPA1-DPB1) and rubella-specific antibodies (global p-value of 0.03). Associations were found between both extended A*02-C*03-B*15-AAAACGGGGC-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 (p = 0.002) and HLA-only A*02-C*03-B*15-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 haplotypes (p = 0.009) and higher levels of rubella antibodies. The class II HLA-only haplotype DRB1*13-DQA1*01-DQB1*06-DPA1*01-DPB1*04 (p = 0.04) lacking LTA-TNF-LST1 SNPs was associated with lower rubella antibody responses. Similarly, the class I-class II HLA-only A*01-C*07-B*08-DRB1*03-DQA1*05-DQB1*02-DPA1*01-DPB1*04 haplotype was associated with increased TNF-alpha secretion levels (p = 0.009). In contrast, the extended AAAACGGGGC-DRB1*01-DQA1*01-DQB1*05-DPA1*01-DPB1*04 (p = 0.01) haplotype was found to trend with decreased rubella-specific IL-6 secretion levels.These data suggest the importance of examining both HLA genes and genes in the class III region as part of the extended haplotypes useful in understanding genomic drivers regulating immune responses to rubella vaccine

    Expression Profiling of Major Histocompatibility and Natural Killer Complex Genes Reveals Candidates for Controlling Risk of Graft versus Host Disease

    Get PDF
    Background: The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. Methodology/Principal Findings: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. Conclusions/Significance: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients

    Characterisation of LST1

    No full text
    corecore