1,499 research outputs found
Transverse Momentum Spectra in Au+Au and d+Au Collisions at =200 GeV and the Pseudorapidity Dependence of High p Suppression
We present spectra of charged hadrons from Au+Au and d+Au collisions at
GeV measured with the BRAHMS experiment at RHIC. The
spectra for different collision centralities are compared to spectra from collisions at the same energy scaled by the number of binary
collisions. The resulting ratios (nuclear modification factors) for central
Au+Au collisions at and evidence a strong suppression in
the high region (2 GeV/c). In contrast, the d+Au nuclear
modification factor (at ) exhibits an enhancement of the high
yields. These measurements indicate a high energy loss of the high
particles in the medium created in the central Au+Au collisions. The lack of
suppression in d+Au collisions makes it unlikely that initial state effects can
explain the suppression in the central Au+Au collisions.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
New results on Coulomb interaction effects in relativistic heavy ion collisions
The effects of the Coulomb interaction on charged pion production in Au+Au collisions at RHIC-BES energies are studied. From pT spectra of charged pions measured with STAR experiment, the negative-to-positive pion ratios as a
function of transverse momentum are obtained. Based of these pion ratio the finalstate Coulomb interaction can be investigated. The “Coulomb kick” (a momentum change due to Coulomb interaction) and initial pion ratio for RHIC-BES energies (7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV) and various centrality classes are obtained. The energy and centrality dependence of the Coulomb kick is presented.
These results are connected with the kinetic freeze-out dynamics
Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at GeV
The BRAHMS collaboration has measured transverse momentum spectra of pions,
kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at
GeV. As the collisions become more central the collective
radial flow increases while the temperature of kinetic freeze-out decreases.
The temperature is lower and the radial flow weaker at forward rapidity. Pion
and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are
suppressed for central collisions relative to scaled collisions. This
suppression, which increases as the collisions become more central is
consistent with jet quenching models and is also present with comparable
magnitude at forward rapidity. At such rapidities initial state effects may
also be present and persistence of the meson suppression to high rapidity may
reflect a combination of jet quenching and nuclear shadowing. The ratio of
protons to mesons increases as the collisions become more central and is
largest at forward rapidities.Comment: 19 pages, 11 figures and 6 table
Rapidity dependence of deuteron production in Au+Au collisions at = 200 GeV
We have measured the distributions of protons and deuterons produced in high
energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse
and longitudinal momentum. Near mid-rapidity we have also measured the
distribution of anti-protons and anti-deuterons. We present our results in the
context of coalescence models. In particular we extract the "volume of
homogeneity" and the average phase-space density for protons and anti-protons.
Near central rapidity the coalescence parameter and the space
averaged phase-space density are very similar for both protons and
anti-protons. For protons we see little variation of either or the
space averaged phase-space density as the rapidity increases from 0 to 3.
However both these quantities depend strongly on at all rapidities. These
results are in contrast to lower energy data where the proton and anti-proton
phase-space densities are different at =0 and both and depend
strongly on rapidity.Comment: Document updated after proofs received from PR
Evolution of the nuclear modification factors with rapidity and centrality in d+Au collisions at $\sqrt{s_{NN}} = 200 GeV
We report on a study of the transverse momentum dependence of nuclear
modification factors for charged hadrons produced in deuteron + gold
collisions at GeV, as a function of collision centrality
and of the pseudorapidity () of the produced hadrons. We
find significant and systematic decrease of with increasing rapidity.
The midrapidity enhancement and the forward rapidity suppression are more
pronounced in central collisions relative to peripheral collisions. These
results are relevant to the study of the possible onset of gluon saturation at
RHIC energies.Comment: Four pages, four figures. Published in PRL. Figures 1 and 2 have been
updated, and several changes made to the tex
Recent Results from the BRAHMS Experiment
We present recent results obtained by the BRAHMS experiment at the
Relativistic Heavy Ion Collider (RHIC) for the systems of Au + Au and Cu + Cu
at \rootsnn{200} and at 62.4 GeV, and p + p at \rootsnn{200}. Nuclear
modification factors for Au + Au and Cu + Cu collisions are presented. Analysis
of anti-particle to particle ratios as a function of rapidity and collision
energy reveal that particle populations at the chemical freeze-out stage for
heavy-ion reactions at and above SPS energies are controlled by the baryon
chemical potential. From the particle spectra we deduce significant radial
expansion ( 0.75), as expected for systems created with a large
initial energy density. We also measure the elliptic flow parameter
versus rapidity and \ptn. We present rapidity dependent ratios within
for Au + Au and Cu + Cu at \rootsnn{200}. \Raa is found to increase
with decreasing collision energy, decreasing system size, and when going
towards more peripheral collisions. However, \Raa shows only a very weak
dependence on rapidity (for ), both for pions and protons.Comment: 16 pages and 14 figures, proceedings for plenary talk at Quark Matter
2005, Budapest, Hungar
Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment
We review the main results obtained by the BRAHMS collaboration on the
properties of hot and dense hadronic and partonic matter produced in
ultrarelativistic heavy ion collisions at RHIC. A particular focus of this
paper is to discuss to what extent the results collected so far by BRAHMS, and
by the other three experiments at RHIC, can be taken as evidence for the
formation of a state of deconfined partonic matter, the so called
quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor
state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
Right hepatic artery aneurysm with secondary aneurysm-coledocian fistula
Institutul Clinic Fundeni, București România, Al XIII-lea Congres al Asociației Chirurgilor „Nicolae Anestiadi” și
al III-lea Congres al Societății de Endoscopie, Chirurgie miniminvazivă și Ultrasonografie ”V.M.Guțu” din Republica MoldovaIntroducere: Vascularizarea arterială a ficatului reprezintă pentru anatomist și nu numai un subiect de mare interes. Variantele de
origine și distribuție sunt multiple și recunoașterea lor este importantă. Anevrismul arterei hepatice este o patologie rară, incidența fiind
de aproximativ 20% din anevrismele viscerale.
Material și metode: Scopul acestui articol este de a prezenta un caz de anevrism de artera hepatica dreapta, parițal trombozat cu
compresie inițială asupra CBP, ulterior cu fistulă anevrismo-coledociană secundară, și cu artera heaptică stângă accesorie emergentă
din artera gastrică stânga, situație în care autorii nu au găsit în literatura de specialitate consultată.
Rezultate: Examenul histopatologic a confirmat diagnosticul de anevrism al arterei hepatice.
Concluzii: Importanța cunoașterii exactă a modelului vascularizării este de interes pentru chirurg, internist și imagist, precum și
existența acestui tip de patologie anevrismală suprapusă poate întări procesul de diagnostic și terapeutic.Introduction: Liver vascularization is an anatomist and not only a subject of great interest. Variants of origin and distribution are
multiple and their recognition is important. Liver artery aneurysm is a rare pathology, with an incidence of approximately 20% of
visceral aneurysms.
Material and methods: The aim of this article is to present a case of right hepatic artery aneurysm, partial thrombosis with initial
compression on CBP, later with the secondary aneurysm-coledocyan fistula, and with left hepatic accessory artery from left gastric
artery, where the authors do not have found in the literature.
Results: The histopathological examination confirmed the diagnosis of hepatic artery aneurysm.
Conclusions: The importance of accurate knowledge of the vascularization model is of interest to the surgeon, internist and imagist,
and the existence of this type of overlapping aneurysmal pathology can strengthen the diagnostic and therapeutic process
Scanning the phases of QCD with BRAHMS
BRAHMS has the ability to study relativistic heavy ion collisions from the
final freeze-out of hadrons all the way back to the initial wave-function of
the gold nuclei. This is accomplished by studying hadrons with a very wide
range of momenta and angles. In doing so we can scan various phases of QCD,
from a hadron gas, to a quark gluon plasma and perhaps to a color glass
condensate.Comment: 8 pages, 6 figures, proceedings of plenary talk at Quark Matter 2004
conferenc
- …