868 research outputs found
Production of \phi Mesons in Near-Threshold \pi N and N N Reactions
We analyze the production of mesons in and NN reactions in the
near-threshold region, using throughout the conventional ``non-strange''
dynamics based on such processes which are allowed by the non-ideal
mixing. We show that the occurrence of the direct
interaction may show up in different unpolarized and polarization observables
in reactions. We find a strong non-trivial difference between
observables in the reactions and caused by the
different role of the spin singlet and triplet states in the entrance channel.
A series of predictions for the experimental study of this effect is presented.Comment: 35 pages including 18 figure
Mapping the landscape of metabolic goals of a cell
Genome-scale flux balance models of metabolism provide testable predictions of all metabolic rates in an organism, by assuming that the cell is optimizing a metabolic goal known as the objective function. We introduce an efficient inverse flux balance analysis (invFBA) approach, based on linear programming duality, to characterize the space of possible objective functions compatible with measured fluxes. After testing our algorithm on simulated E. coli data and time-dependent S. oneidensis fluxes inferred from gene expression, we apply our inverse approach to flux measurements in long-term evolved E. coli strains, revealing objective functions that provide insight into metabolic adaptation trajectories.MURI W911NF-12-1-0390 - Army Research Office (US); MURI W911NF-12-1-0390 - Army Research Office (US); 5R01GM089978-02 - National Institutes of Health (US); IIS-1237022 - National Science Foundation (US); DE-SC0012627 - U.S. Department of Energy; HR0011-15-C-0091 - Defense Sciences Office, DARPA; National Institutes of Health; R01GM103502; 5R01DE024468; 1457695 - National Science Foundatio
Detection of acceleration radiation in a Bose-Einstein condensate
We propose and study methods for detecting the Unruh effect in a
Bose-Einstein condensate. The Bogoliubov vacuum of a Bose-Einstein condensate
is used here to simulate a scalar field-theory, and accelerated atom dots or
optical lattices as means for detecting phonon radiation due to acceleration
effects. We study Unruh's effect for linear acceleration and circular
acceleration. In particular, we study the dispersive effects of the Bogoliubov
spectrum on the ideal case of exact thermalization. Our results suggest that
Unruh's acceleration radiation can be tested using current accessible
experimental methods.Comment: 5 pages, 3 figure
Topological Wilson-loop area law manifested using a superposition of loops
We introduce a new topological effect involving interference of two meson
loops, manifesting a path-independent topological area dependence. The effect
also draws a connection between quark confinement, Wilson-loops and topological
interference effects. Although this is only a gedanken experiment in the
context of particle physics, such an experiment may be realized and used as a
tool to test confinement effects and phase transitions in quantum simulation of
dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph
Optical second harmonic generation near a black hole horizon as possible source of experimental information on quantum gravitational effects
Optical second harmonic generation near a black hole horizon is suggested as
a source of experimental information on quantum gravitational effects. While
absent in the framework of general relativity, second harmonic generation
appears in the toy models of sonic and electromagnetic black holes, where
spatial dispersion at high frequencies for waves boosted towards the horizon is
introduced. Localization effects in the light scattering from random
fluctuations of matter fields and space-time metric near the black hole horizon
produce a pronounced peak in the angular distribution of second harmonics of
light in the direction normal to the horizon. Such second harmonic light has
the best chances to escape the vicinity of the black hole. This phenomenon is
similar to the well-known strong enhancement of diffuse second harmonic
emission from a randomly rough metal surface in the direction normal to the
surface.Comment: 4 pages, 1 figur
ΠΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ: ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½Ρ Π°ΡΠΏΠ΅ΠΊΡΠΈ
Π Π΅Π·Π½ΡΠΊ Π.Π. ΠΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ: ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½Ρ Π°ΡΠΏΠ΅ΠΊΡΠΈ : Π°Π²ΡΠΎΡΠ΅Ρ. Π΄ΠΈΡ. ... ΠΊΠ°Π½Π΄. ΡΡΠΈΠ΄. Π½Π°ΡΠΊ : 12.00.01 / Π. Π. Π Π΅Π·Π½ΡΠΊ; ΠΊΠ΅Ρ. ΡΠΎΠ±ΠΎΡΠΈ Π. Π. ΠΡΠ·ΠΈΡΠ΅Π½ΠΊΠΎ; ΠΠ°Ρ. ΡΠ½.-Ρ "ΠΠ΄Π΅ΡΡΠΊΠ° ΡΡΠΈΠ΄ΠΈΡΠ½Π° Π°ΠΊΠ°Π΄Π΅ΠΌΡΡ". β ΠΠ΄Π΅ΡΠ°, 2008. β 18 Ρ.ΠΠΈΡΠ΅ΡΡΠ°ΡΡΡ Π½Π° Π·Π΄ΠΎΠ±ΡΡΡΡ Π½Π°ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΡΡΠΏΠ΅Π½Ρ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° ΡΡΠΈΠ΄ΠΈΡΠ½ΠΈΡ
Π½Π°ΡΠΊ Π·Π° ΡΠΏΠ΅ΡΡΠ°Π»ΡΠ½ΡΡΡΡ 12.00.01 β ΡΠ΅ΠΎΡΡΡ ΡΠ° ΡΡΡΠΎΡΡΡ Π΄Π΅ΡΠΆΠ°Π²ΠΈ Ρ ΠΏΡΠ°Π²Π°; ΡΡΡΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΠ½ΠΈΡ
Ρ ΠΏΡΠ°Π²ΠΎΠ²ΠΈΡ
ΡΡΠ΅Π½Ρ. β ΠΠ΄Π΅ΡΡΠΊΠ° Π½Π°ΡΡΠΎΠ½Π°Π»ΡΠ½Π° ΡΡΠΈΠ΄ΠΈΡΠ½Π° Π°ΠΊΠ°Π΄Π΅ΠΌΡΡ, ΠΠ΄Π΅ΡΠ°, 2008.
Π£ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΡΡ Π²ΠΏΠ΅ΡΡΠ΅ Ρ Π²ΡΡΡΠΈΠ·Π½ΡΠ½ΡΠΉ ΡΡΠΈΠ΄ΠΈΡΠ½ΡΠΉ Π½Π°ΡΡΡ Π½Π° ΠΌΠΎΠ½ΠΎΠ³ΡΠ°ΡΡΡΠ½ΠΎΠΌΡ ΡΡΠ²Π½Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ Π°Π½Π°Π»ΡΠ·ΡΡΡΡΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½Ρ ΠΎΡΠ½ΠΎΠ²ΠΈ ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ. ΠΠΈΡΠ²ΡΡΠ»Π΅Π½ΠΎ ΡΠΎΠ·ΡΠΎΠ±ΠΊΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ Π² ΡΡΡΠΎΡΡΡ Π²ΡΡΡΠΈΠ·Π½ΡΠ½ΠΎΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΡ Π½Π°ΡΠΊΠΈ, ΠΏΠΎΡΠΈΠ½Π°ΡΡΠΈ Π· 60-Ρ
ΡΠΎΠΊΡΠ² Π₯ΠΠ₯ ΡΡ. Ρ Π΄ΠΎ ΡΡΠΎΠ³ΠΎΠ΄Π΅Π½Π½Ρ; Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΏΠΎΠ½ΡΡΡΡ βΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΈΠΉ ΠΏΡΠΎΡΠ΅Ρβ Ρ βΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡβ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΎΡΠ½ΠΎΠ²ΠΈ (ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈ ΡΠ° ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ) ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ. ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΠΈ Π΄ΠΎ ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ, ΡΠΎ ΡΡΠ½ΡΡΡΡ Ρ ΡΡΠ»ΠΎΡΠΎΡΡΡΠΊΠΎ-ΡΡΡΠΎΡΠΈΡΠ½ΠΈΡ
Π½Π°ΡΠΊΠΎΠ²ΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡΡΡ
ΠΌΠΈΠ½ΡΠ»ΠΎΠ³ΠΎ Ρ ΡΡΡΠ°ΡΠ½ΠΎΡΡΡ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΡΡΠ½ΡΡΡΠΈΡ
ΠΏΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π΄ΠΎ ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ. ΠΠΎΠΊΡΠ΅ΠΌΠ°, ΡΡΠΎΡΠ½Π΅Π½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π°Π³ΠΈ ΠΉ Π½Π΅Π΄ΠΎΠ»ΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΎΠΆ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Ρ ΡΠΎΡΠΌΠ°ΡΡΠΉΠ½ΠΎΠ³ΠΎ Ρ ΡΠΈΠ²ΡΠ»ΡΠ·Π°ΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΄Ρ
ΠΎΠ΄ΡΠ². ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π°Π²ΡΠΎΡΡΡΠΊΠΈΠΉ ΠΏΡΠ΄Ρ
ΡΠ΄ β Π±Π°Π³Π°ΡΠΎΡΠΈΠ½Π½ΠΈΠΊ (ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ½ΠΈΠΉ) βΠ΄ΠΎ ΠΏΠ΅ΡΡΠΎΠ΄ΠΈΠ·Π°ΡΡΡ ΡΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ.ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡΠ΅Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ° ΡΡΠΈΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΡΠΊ ΠΏΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΡΡΠΈ 12.00.01 β ΡΠ΅ΠΎΡΠΈΡ ΠΈ ΠΈΡΡΠΎΡΠΈΡ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π° ΠΈ ΠΏΡΠ°Π²Π°, ΠΈΡΡΠΎΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΠΏΡΠ°Π²ΠΎΠ²ΡΡ
ΡΡΠ΅Π½ΠΈΠΉ. β ΠΠ΄Π΅ΡΡΠΊΠ°Ρ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠΈΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΡ, ΠΠ΄Π΅ΡΡΠ°, 2008.
Π Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²Π°ΠΆΠ½ΠΎΠΉ Π½Π°ΡΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ, Π·Π°ΠΊΠ»ΡΡΠ°ΡΡΠ΅ΠΉΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π² ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΠΈΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠ΅, ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠΉ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠ½ΠΎΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΠΏΠ΅ΡΠ²ΡΠ΅ Π² ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΠΈΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠ΅ Π½Π° ΠΌΠΎΠ½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡΡΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. ΠΡΠ²Π΅ΡΠ΅Π½Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ Π² ΠΈΡΡΠΎΡΠΈΠΈ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠΉ Π½Π°ΡΠΊΠΈ, Π½Π°ΡΠΈΠ½Π°Ρ Ρ 60-Ρ
Π³ΠΎΠ΄ΠΎΠ² Π₯ΠΠ₯ Π². Π΄ΠΎ Π½Π°ΡΠΈΡ
Π΄Π½Π΅ΠΉ.
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΠΏΠΎΠ½ΡΡΠΈΡ "ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΠ΅ΡΡ" ΠΈ "ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°", Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ (ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ) ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π² ΡΠΈΡΠ»Π΅ Π²Π°ΠΆΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π²ΡΠ΄Π΅Π»ΡΡΡΡΡ: Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ
ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΏΡΠΈ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠ°Π²Π½ΡΡ
ΠΏΠΎ ΡΠ°ΠΊΡΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΈΡΡ
ΠΎΠ΄ΠΈΡΡ ΠΈΠ· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ
ΠΏΡΠΈΡΠΈΠ½ (ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π²); ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²ΡΡΡΠΈΠ΅ ΡΡΡΠΏΠ΅Π½ΠΈ Π²Π½ΡΡΡΠΈ ΡΠ΅Π±Ρ ΡΠ°Π·Π±ΠΈΡΡ Π½Π° Π½ΠΈΠ·ΡΠΈΠ΅, ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΡΡΠΎΠ²Π½Ρ Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΡΡ ΡΠ°ΠΊΡΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈ ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΌΠΈ, Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°ΠΌΠΈ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΡΡΠΎΠ²Π½Ρ; ΡΠ°Π²Π½ΠΎΠΏΡΠ°Π²ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΎΠ΄Π½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΡ; Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΌΠΈΠΌΠΎ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π²ΡΠ΄Π΅Π»ΡΠ΅ΠΌΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ², Π΅ΡΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎΡΠ½ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΈ Ρ
ΡΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ Π΅Π΄ΠΈΠ½ΠΎΠΉ Π΄Π»Ρ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ° Π² ΡΠ΅Π»ΠΎΠΌ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡΡ Π½Π° ΡΠ°ΠΌΠΎΠΌ Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠΉ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΌΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΏΠΎΠ·Π½Π°Π½ΠΈΡ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΈΡΡΠΎΡΠΈΠΈ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ²Π»Π΅Π½ΠΈΡ Π² ΡΠ΅Π»ΠΎΠΌ, ΡΠ°ΠΊ ΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ Π΅Π΅ Π°ΡΠΏΠ΅ΠΊΡΠ° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠ³ΠΎ, ΠΏΠΎΠ΄ΡΠΈΠ½Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ Π»ΠΎΠ³ΠΈΠΊΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ; ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ Π½Π΅Π»ΡΠ·Ρ ΡΡΡΠΎΠ³ΠΎ ΠΎΡΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡ ΠΎΠ΄ΠΈΠ½ ΠΎΡ Π΄ΡΡΠ³ΠΎΠ³ΠΎ; Π² ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΏΠ»Π°Π½Π΅ ΡΡΡΡΠΊΡΡΡΠ° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΠΎΠΉ Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΠΌΠΈ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΠΌΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°Π·Π²ΠΈΡΡΡ
ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΡΡ
ΠΌΠ°ΠΊΡΠΎΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡΡΠΌΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠΈΡΡΡΡ Ρ Π³Π»Π°Π²Π½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΌΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°ΠΌΠΈ, Π·Π°Π΄Π°ΡΡΠΈΠΌΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΡ ΠΈ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠΉ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΠΈ; ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ Π΅Π΄ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ: Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π½ΠΈΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΈΡΡΠΎΡΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ, Π° Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½ΠΈΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² β Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΡΡΠ³ΠΎΠ³ΠΎ; Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΡΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΡΠ΅Ρ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ Π½Π° ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΏΡΠ°Π²Π°.
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ Π² ΡΠΈΠ»ΠΎΡΠΎΡΡΠΊΠΎ-ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡΡ
ΠΏΡΠΎΡΠ»ΠΎΠ³ΠΎ ΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ. ΠΡΡΠ²Π»Π΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΡΡΠΎΡΠ½Π΅Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈ ΡΠΈΠ²ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ².
ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ Π°Π²ΡΠΎΡΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ β ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΠΊΡΠΎΡΠ½ΡΠΉ (ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ) β ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠ°ΠΊΠΈΡ
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
: ΠΏΡΠ°Π²ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΡΠΎΠΉ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ ΠΈ Π·Π½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΠ·Π°ΡΠΈΡ ΠΈΡΡΠΎΡΠΈΠΊΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π±Π°Π·ΠΈΡΠΎΠ²Π°ΡΡΡΡ Π½Π° Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ, ΡΠ°ΠΌΠΎΠ³ΠΎ ΠΏΡΠ°Π²Π°; ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ Π²Π°ΠΆΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π΅ΠΉ ΠΏΡΠ°Π²Π° Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΡΡΠ΅ΡΠ°ΠΌΠΈ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΆΠΈΠ·Π½ΠΈ, ΡΠΎΡΡΠ°Π²Π½ΠΎΠΉ ΡΠ°ΡΡΡΡ, ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ½ΠΎ Π΅ΡΡΡ; ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΏΡΠ°Π²ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π° Π² ΡΠ°Π·Π½ΡΡ
ΡΡΠ°ΠΏΠ°Ρ
ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠ°Π²Π° ΠΈΠΌΠ΅ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΡΡΠ΅Π±ΡΡΡΠΈΠ΅ ΡΡΠ΅ΡΠ° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΊΠ°ΠΊ ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ, ΡΠ°ΠΊ ΠΈ ΡΠΈΠ²ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ²; ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ°ΡΡΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠΈΠ²ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΈ ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ².Candidateβs of Law thesis (speciality 12.00.01 β Theory and History of State and Law; History of Political and Legal Studies. β Odessa National Law Academy, Odessa, 2008.
For the first time in the national legal science conceptual principles of periodization of historical legal process have undergone systematic analysis on monographic level. The problem development of periodization of historic legal process has been elucidated. The notions of βhistorical legal processβ and βperiodization of historical legal processβ have been elaborated. Methodological fundamentals (principles and determination) of periodization of historical legal process have been researched. Main approaches towards periodization of historical process existing in philosophical and historical scientific constructions of the past and modern times have been analyzed. Resources of existing approaches towards periodization of historical and legal process have been exposed. Advantages and disadvantages in historical legal researches as well as the resources of synthesis of formation and civilization approaches have been specified
The Fermi Problem in Discrete Systems
The Fermi two-atom problem illustrates an apparent causality violation in
Quantum Field Theory which has to do with the nature of the built in
correlations in the vacuum. It has been a constant subject of theoretical
debate and discussions during the last few decades. Nevertheless, although the
issues at hand could in principle be tested experimentally, the smallness of
such apparent violations of causality in Quantum Electrodynamics prevented the
observation of the predicted effect. In the present paper we show that the
problem can be simulated within the framework of discrete systems that can be
manifested, for instance, by trapped atoms in optical lattices or trapped ions.
Unlike the original continuum case, the causal structure is no longer sharp.
Nevertheless, as we show, it is possible to distinguish between "trivial"
effects due to "direct" causality violations, and the effects associated with
Fermi's problem, even in such discrete settings. The ability to control
externally the strength of the atom-field interactions, enables us also to
study both the original Fermi problem with "bare atoms", as well as correction
in the scenario that involves "dressed" atoms. Finally, we show that in
principle, the Fermi effect can be detected using trapped ions.Comment: Second version - minor change
- β¦