62 research outputs found

    Differential expression profiles of cell-to-matrix-related molecules in adrenal cortical tumors: Diagnostic and prognostic implications

    Get PDF
    The molecular mechanisms of adrenocortical carcinoma development are incompletely defined. De-regulation of cellular-to-extracellular matrix interactions and angiogenesis appear among mechanisms associated to the malignant phenotype. Our aim was to investigate, employing PCR-based array profiling, 157 molecules involved in cell-to-matrix interactions and angiogenesis in a frozen series of 6 benign and 6 malignant adrenocortical neoplasms, to identify novel pathogenetic markers. In 14 genes, a significant dysregulation was detected in adrenocortical carcinomas as compared to adenomas, most of them being downregulated. Three exceptions—hyaluronan synthase 1 (HAS-1), laminin α3 and osteopontin genes—demonstrated an increased expression in adrenocortical carcinomas of 4.46, 4.23 and 20.32-fold, respectively, and were validated by immunohistochemistry on a series of paraffin-embedded tissues, including 20 adenomas and 73 carcinomas. Osteopontin protein, absent in all adenomas, was expressed in a carcinoma subset (25/73) (p = 0.0022). Laminin α3 and HAS-1 were mostly expressed in smooth muscle and endothelial cells of the vascular network of both benign and malignant adrenocortical tumors. HAS-1 was also detected in tumor cells, with a more intense pattern in carcinomas. In this group, strong expression was significantly associated with more favorable clinicopathological features. These data demonstrate that cell-to-matrix interactions are specifically altered in adrenocortical carcinoma and identify osteopontin and HAS-1 as novel potential diagnostic and prognostic biomarkers, respectively, in adrenal cortical tumors

    Micro-RNA-215 and -375 regulate thymidylate synthase protein expression in pleural mesothelioma and mediate epithelial to mesenchymal transition

    Get PDF
    The standard front-line treatment for pleural mesothelioma (PM) is pemetrexed-based chemotherapy, whose major target is thymidylate synthase (TS). In several cancer models, miR-215 and miR-375 have been shown to target TS, while information on these miRNAs in PM are still limited although suggest their role in epithelial to mesenchymal transition. Seventy-one consecutive PM tissues (4 biphasic, 7 sarcomatoid, and 60 epithelioid types) and 16 commercial and patient-derived PM cell lines were screened for TS, miR-215, and miR-375 expression. REN and 570B cells were selected for miR-215 and miR-375 transient transfections to test TS modulation. ZEB1 protein expression in tumor samples was also tested. Moreover, genetic profile was investigated by means of BAP1 and p53 immunohistochemistry. Expression of both miR-215 and miR-375 was significantly higher in epithelioid histotype. Furthermore, inverse correlation between TS protein and both miR-215 and miR-375 expression was found. Efficiently transfected REN and 570B cell lines overexpressing miR-215 and miR-375 showed decreased TS protein levels. Epithelioid PM with a mesenchymal component highlighted by reticulin stain showed significantly higher TS and ZEB1 protein and lower miRNA expression. A better survival was recorded for BAP1 lost/TS low cases. Our data indicate that miR-215 and miR-375 are involved in TS regulation as well as in epithelial-to-mesenchymal transition in PM. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00428-022-03321-8

    ACTH-producing tumorlets and carcinoids of the lung: clinico-pathologic study of 63 cases and review of the literature.

    Get PDF
    Adrenocorticotropic hormone (ACTH)-secreting lung carcinoids represent the principal cause of ectopic Cushing syndrome, but the prevalence of ACTH expression and the association between ACTH production and Cushing syndrome in lung carcinoids have scarcely been investigated. In addition, available information on the prognostic meaning of ACTH production is controversial. The aims of this multicentric retrospective study, also including a review of the literature, were to describe the clinico-pathologic features of ACTH-producing lung carcinoids, to assess recurrence and specific survival rates, and to evaluate potential prognostic factors. To identify ACTH production in 254 unselected and radically resected lung carcinoids, we used a double approach including RT-PCR (mRNA encoding for pro-opiomelanocortin) and immunohistochemistry (antibodies against ACTH and β-endorphin). Sixty-three (24.8%) tumors produced ACTH and 11 of them (17.4%), representing 4.3% of the whole series, were associated with Cushing syndrome. The median follow-up time was 71 months. The 10-year overall and specific survival rates were 88.5% and 98.2%, respectively, with difference neither between functioning and nonfunctioning tumors nor between ACTH-positive and ACTH-negative carcinoids. At univariate analysis, histological type (typical or atypical) and Ki67 index significantly correlated with tumor recurrence. The literature review identified 172 previously reported patients with functioning ACTH-secreting lung carcinoids, and the meta-analysis of survival showed that 92% of them were alive after a mean follow-up time of 50 months. Our results demonstrate that ACTH-producing lung carcinoids are not rare, are not always associated with Cushing syndrome, and do not represent an aggressive variant of lung carcinoid

    Multiplex Zymography Captures Stage-specific Activity Profiles of Cathepsins K, L, and S in Human Breast, Lung, and Cervical Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties.</p> <p>Methods</p> <p>Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity.</p> <p>Results</p> <p>Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p < .05), and stage II for breast; n = 6, p < .0001). Interestingly, cervical and breast tumor cathepsin activity was highest at the earliest stage we tested, stages I and II, respectively, and then were significantly lower at the latest stages tested (III and IV, respectively) (n = 6, p < 0.01 and p < 0.05), but lung cathepsin activity increased from one stage to the next (n = 6, p < .05). Using cathepsin K as a diagnostic biomarker for breast cancer detected with multiplex zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients.</p> <p>Conclusions</p> <p>To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.</p
    corecore