1,538 research outputs found

    Water-resource and land-use issues

    Get PDF
    Water resource managementWater useCase studiesCatchment areasLand useHydrologyModelsEvaporationSoil moistureDecision support toolsRunoffFlowForestryDeforestationErosionRain

    Disgust implicated in obsessive-compulsive disorder

    Get PDF
    Psychiatric classificatory systems consider obsessions and compulsions as forms of anxiety disorder. However, the neurology of diseases associated with obsessive-compulsive symptoms suggests the involvement of fronto-striatal regions likely to be involved in the mediation of the emotion of disgust, suggesting that dysfunctions of disgust should be considered alongside anxiety in the pathogenesis of obsessive-compulsive behaviours. We therefore tested recognition of facial expressions of basic emotions (including disgust) by groups of participants with obsessive-compulsive disorder (OCD) and with Gilles de la Tourette's syndrome (GTS) with and without co-present obsessive-compulsive behaviours (GTS with OCB; GTS without OCB). A group of people suffering from panic disorder and generalized anxiety were also included in the study. Both groups with obsessive-compulsive symptoms (OCD; GTS with OCB) showed impaired recognition of facial expressions of disgust. Such problems were not evident in participants with panic disorder and generalized anxiety, or for participants with GTS without obsessions or compulsions, indicating that the deficit is closely related to the presence of obsessive-compulsive symptoms. Participants with OCD were able to assign words to emotion categories without difficulty, showing that their problem with disgust is linked to a failure to recognize this emotion in others and not a comprehension or response criterion effect. Impaired recognition of disgust is consistent with the neurology of OCD and with the idea that abnormal experience of disgust may be involved in the genesis of obsessions and compulsions

    Winter Conditions Influence Biological Responses of Migrating Hummingbirds

    Full text link
    Conserving biological diversity given ongoing environmental changes requires the knowledge of how organisms respond biologically to these changes; however, we rarely have this information. This data deficiency can be addressed with coordinated monitoring programs that provide field data across temporal and spatial scales and with process-based models, which provide a method for predicting how species, in particular migrating species that face different conditions across their range, will respond to climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter ground conditions, we used operative temperature as a proxy for physiological constraint, and precipitation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact the timing and condition of birds as they migrate north. In addition, our results suggest that biologically informed environmental surrogates provide a valuable tool for predicting how climate variability across years influences the animal populations

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Classical tests of general relativity in the Newtonian limit of Schwarzschild-de Sitter spacetime

    Full text link
    Recently it has been shown that despite previous claims the cosmological constant affects light bending. In the present article we study light bending and the advance of Mercury's perihelion in the context of the Newtonian limit of Schwarzschild-de Sitter spacetime employing the special relativistic equivalence of mass and energy. In both cases, up to a constant factor, we find the same results as in the full general relativistic treatment of the same phenomena. These approximate and intuitive arguments demonstrate clearly what effects should have been expected from the presence of Λ\Lambda in the general relativistic treatment of these phenomena.Comment: 12 pages, Revtex, 1 figur

    Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

    Full text link
    We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.Comment: 14 pages, 10 figures, accepted to the Astrophysical Journa

    Superradiance from an ultrathin film of three-level V-type atoms: Interplay between splitting, quantum coherence and local-field effects

    Get PDF
    We carry out a theoretical study of the collective spontaneous emission (superradiance) from an ultrathin film comprised of three-level atoms with VV-configuration of the operating transitions. As the thickness of the system is small compared to the emission wavelength inside the film, the local-field correction to the averaged Maxwell field is relevant. We show that the interplay between the low-frequency quantum coherence within the subspace of the upper doublet states and the local-field correction may drastically affect the branching ratio of the operating transitions. This effect may be used for controlling the emission process by varying the doublet splitting and the amount of low-frequency coherence.Comment: 15 pages, 5 figure
    corecore