367 research outputs found

    Inflorescence stem grafting made easy in Arabidopsis

    Get PDF
    UNLABELLED BACKGROUND Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting) have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. RESULTS Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87%) grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of newly formed vascular connections, parenchyma tissue and lignin accumulation, supporting the presumed success of the graft union between two sections of the primary inflorescence stem. CONCLUSIONS We describe a simple and reliable method for grafting sections of an Arabidopsis inflorescence stem. This step-by-step protocol facilitates laboratories without grafting experience to further explore the molecular and chemical signalling which coordinates communications between the shoot and reproductive tissues

    A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    Get PDF
    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis

    Sulfate and Phosphate Speleothems at Jenolan Caves, New South Wales, Australia

    Get PDF
    Sulfate and phosphate deposits at Jenolan Caves occur in a variety of forms and compositions including crusts, ‘flowers’ and fibrous masses of gypsum (selenite), and clusters of boss-like speleothems (potatoes) of ardealite (calcium sulphate, phosphate hydrate) with associated gypsum. This boss-like morphology of ardealite does not appear to have been previously described in the literature and this is the first report of ardealite in New South Wales. Gypsum var. selenite occurs in close association with pyrite-bearing palaeokarst, while the ardealite gypsum association appears to relate to deposits of mineralised bat guano. Isotope studies confirm that the two gypsum suites have separate sources of sulfur, one from the weathering of pyrite (-1.4 to +4.9 δ34S) for gypsum (selenite) and the other from alteration of bat guano (+11.4 to +12.9 δ34S) for the ardealite and gypsum crusts

    The role of haem in the regulation of rat liver tryptophan metabolism

    Full text link

    A foliar pigment-based bioassay for interrogating chloroplast signalling revealed that carotenoid isomerisation regulates chlorophyll abundance

    Get PDF
    Background: Some plastid-derived metabolites can control nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. For example, norfurazon (NFZ) induced inhibition of carotenoid biosynthesis in leaves elicits a protoporphyrin IX (Mg-ProtoIX) retrograde signal that controls chlorophyll biosynthesis and chloroplast development. Carotenoid cleavage products, known as apocarotenoids, also regulate plastid development. The key steps in carotenoid biosynthesis or catabolism that can regulate chlorophyll biosynthesis in leaf tissues remain unclear. Here, we established a foliar pigment-based bioassay using Arabidopsis rosette leaves to investigate plastid signalling processes in young expanding leaves comprising rapidly dividing and expanding cells containing active chloroplast biogenesis. Results: We demonstrate that environmental treatments (extended darkness and cold exposure) as well as chemical (norfurazon; NFZ) inhibition of carotenoid biosynthesis, reduce chlorophyll levels in young, but not older leaves of Arabidopsis. Mutants with disrupted xanthophyll accumulation, apocarotenoid phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. However, perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young leaves of Arabidopsis plants. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity caused higher phytoene accumulation in younger crtiso leaves compared to WT indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway. Conclusion: The Arabidopsis foliar pigment-based bioassay can be used to diferentiate signalling events elicited by environmental change, chemical treatment, and/or genetic perturbation, and determine how they control chloroplast biogenesis and chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION reduced chlorophyll accumulation, but not phytoene biosynthesis in young leaves of Arabidopsis plants growing under a long photoperiod. Findings generated using the newly customised foliar pigment-based bioassay implicate that carotenoid isomerase activity and NFZ-induced inhibition of PDS activity elicit different signalling pathways to control chlorophyll homeostasis in young leaves of Arabidopsis
    • …
    corecore