19,226 research outputs found

    Moduli space coordinates and excited state g-functions

    Full text link
    We consider the space of boundary conditions of Virasoro minimal models formed from the composition of a collection of flows generated by \phi_{1,3}. These have recently been shown to fall naturally into a sequence, each term having a coordinate on it in terms of a boundary parameter, but no global parameter has been proposed. Here we investigate the idea that the overlaps of particular bulk states with the boundary states give natural coordinates on the moduli space of boundary conditions. We find formulae for these overlaps using the known thermodynamic Bethe Ansatz descriptions of the ground and first excited state on the cylinder and show that they give a global coordinate on the space of boundary conditions, showing it is smooth and compact as expected.Comment: 10 pages, 4 figure

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm

    Evaluating 35 Methods to Generate Structural Connectomes Using Pairwise Classification

    Full text link
    There is no consensus on how to construct structural brain networks from diffusion MRI. How variations in pre-processing steps affect network reliability and its ability to distinguish subjects remains opaque. In this work, we address this issue by comparing 35 structural connectome-building pipelines. We vary diffusion reconstruction models, tractography algorithms and parcellations. Next, we classify structural connectome pairs as either belonging to the same individual or not. Connectome weights and eight topological derivative measures form our feature set. For experiments, we use three test-retest datasets from the Consortium for Reliability and Reproducibility (CoRR) comprised of a total of 105 individuals. We also compare pairwise classification results to a commonly used parametric test-retest measure, Intraclass Correlation Coefficient (ICC).Comment: Accepted for MICCAI 2017, 8 pages, 3 figure

    A comparison of three systemic accident analysis methods using 46 SPAD (Signals Passed at Danger) incidents

    Get PDF
    During the period 1996-2003 there were five fatal accidents on the UK railway network, three of which were Signals Passed at Danger (SPAD) events (Watford Junction, 1996; Southall, 1997; Ladbroke Grove, 1999). SPAD events vary in severity and whilst most are not fatal there is the potential to cause serious injuries to passengers and train staff and damage to railway infra-structure. This paper investigates how the current system accident analysis tool used within the railway, the Incident Factor Classification System (IFCS) identifies and analyses causal factors of SPAD events. To evaluate the effectiveness IFCS was used to analysis SPAD incident reports (n=46) and the outputs were compared with two systemic accident analysis methods and relevant outputs (the Human Factors Analysis and Classification System – HFACS and Acci-Maps). The initial reporting process proved to hinder all systemic accident analysis methods in the extraction of causal factors. However, once extracted, all system accident analysis methods were successful in categorizing causal factors and demonstrated various outputs to illustrate the findings

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    Comparison and relative utility of inequality measurements: as applied to Scotland’s child dental health

    Get PDF
    This study compared and assessed the utility of tests of inequality on a series of very large population caries datasets. National cross-sectional caries datasets for Scotland’s 5-year-olds in 1993/94 (n = 5,078); 1995/96 (n = 6,240); 1997/98 (n = 6,584); 1999/00 (n = 6,781); 2002/03 (n = 9,747); 2003/04 (n = 10,956); 2005/06 (n = 10,945) and 2007/08 (n = 12,067) were obtained. Outcomes were based on the d3mft metric (i.e. the number of decayed, missing and filled teeth). An area-based deprivation category (DepCat) measured the subjects’ socioeconomic status (SES). Simple absolute and relative inequality, Odds Ratios and the Significant Caries Index (SIC) as advocated by the World Health Organization were calculated. The measures of complex inequality applied to data were: the Slope Index of Inequality (absolute) and a variety of relative inequality tests i.e. Gini coefficient; Relative Index of Inequality; concentration curve; Koolman and Doorslaer’s transformed Concentration Index; Receiver Operator Curve and Population Attributable Risk (PAR). Additional tests used were plots of SIC deciles (SIC10) and a Scottish Caries Inequality Metric (SCIM10). Over the period, mean d3mft improved from 3.1(95%CI 3.0–3.2) to 1.9(95%CI 1.8–1.9) and d3mft = 0% from 41.1(95%CI 39.8–42.3) to 58.3(95%CI 57.8–59.7). Absolute simple and complex inequality decreased. Relative simple and complex inequality remained comparatively stable. Our results support the use of the SII and RII to measure complex absolute and relative SES inequalities alongside additional tests of complex relative inequality such as PAR and Koolman and Doorslaer’s transformed CI. The latter two have clear interpretations which may influence policy makers. Specialised dental metrics (i.e. SIC, SIC10 and SCIM10) permit the exploration of other important inequalities not determined by SES, and could be applied to many other types of disease where ranking of morbidity is possible e.g. obesity. More generally, the approaches described may be applied to study patterns of health inequality affecting worldwide populations

    Probing the Neutron Star Interior with Glitches

    Full text link
    With the aim of constraining the structural properties of neutron stars and the equation of state of dense matter, we study sudden spin-ups, glitches, occurring in the Vela pulsar and in six other pulsars. We present evidence that glitches represent a self-regulating instability for which the star prepares over a waiting time. The angular momentum requirements of glitches in Vela indicate that at least 1.4% of the star's moment of inertia drives these events. If glitches originate in the liquid of the inner crust, Vela's `radiation radius' R∞R_\infty must exceed ~12 km for a mass of 1.4 solar masses. The isolated neutron star RX J18563-3754 is a promising candidate for a definitive radius measurement, and offers to further our understanding of dense matter and the origin of glitches.Comment: Invited talk at the Pacific Rim Conference on Stellar Astrophysics, Hong Kong, Aug. 1999. 9 pages, 5 figure

    Entanglement generation in continuously coupled parametric generators

    Full text link
    We investigate a compact source of entanglement. This device is composed of a pair of linearly coupled nonlinear waveguides operating by means of degenerate parametric downconversion. For the vacuum state at the input the generalized squeeze variance and logarithmic negativity are used to quantify the amount of nonclassicality and entanglement of output beams. Squeezing and entanglement generation for various dynamical regimes of the device are discussed.Comment: 6 pages, 7 figure

    Potential and current distribution in strongly anisotropic Bi(2)Sr(2) CaCu(2)O(8) single crystals at current breakdown

    Full text link
    Experiments on potential differences in the low-temperature vortex solid phase of monocrystalline platelets of superconducting Bi(2)Sr(2)CaCu(2)O(8) (BSCCO) subjected to currents driven either through an "ab" surface or from one such surface to another show evidence of a resistive/nonresistive front moving progressively out from the current contacts as the current increases. The depth of the resistive region has been measured by a novel in-depth voltage probe contact. The position of the front associated with an injection point appears to depend only on the current magnitude and not on its withdrawal point. It is argued that enhanced nonresistive superconducting anisotropy limits current penetration to less than the London length and results in a flat rectangular resistive region with simultaneous "ab" and "c" current breakdown which moves progressively out from the injection point with increasing current. Measurements in "ab" or "c" configurations are seen to give the same information, involving both ab-plane and c-axis conduction properties.Comment: 9 pages, 13 figures, typo error corrected, last section was refine

    Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.

    Get PDF
    In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1ÎČ, IL8, MCP, MIP1α, MIP1ÎČ). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1ÎČ, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI
    • 

    corecore