92 research outputs found

    New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone

    Get PDF
    Risks of heavy metals-induced severe bone disorders generate interest to their toxicity. The present study was undertaken to monitor the biochemical and antioxidant status of bone of 30 and 80 days old male Wistar rats exposed to 5 week lead treatment. At the end of study, the rats were sacrificed, their long bone i.e. femur were excised, cleaned of soft tissue, minced and homogenized. Nucleic acid content, alkaline phosphatase, lipid peroxidation, catalase, glutathione S-transferase and superoxide dismutase were determined in bone. In both groups of treated animals lead treatment increased the production of malondialdehyde, while reducing activities of catalase, glutathione S-transferase and superoxide dismutase, indicating that it causes oxidative stress. Parallely with these effects lead significantly reduced the nucleic acid content and the activity of alkaline phosphatase, considered as biomarkers of osteoblast's function, conditions and development of bones. Moreover the concentrations of copper, zinc, iron and sodium were reduced in the excised bones. The present study indicates that the lead induced bone toxicity and its deteriorated development is the consequence of a primary oxidative stress. Our results may be helpful in understanding the modulation of biochemical parameters under lead toxicity

    Obesity Reduces Bone Density Associated with Activation of PPARγ and Suppression of Wnt/β-Catenin in Rapidly Growing Male Rats

    Get PDF
    BACKGROUND: It is well established that excessive consumption of a high fat diet (HFD) results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied. METHODOLOGY AND PRINCIPAL FINDINGS: Total enteral nutrition (TEN) was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD) for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD) or a chow diet (low fat diet, LFD) fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA) were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life

    Internet Gaming Disorder Behaviors in emergent adulthood: a pilot study examining the interplay between anxiety and family cohesion

    Get PDF
    Understanding risk and protective factors associated with Internet Gaming Disorder (IGD) has been highlighted as a research priority by the American Psychiatric Association, (2013). The present study focused on the potential IGD risk effect of anxiety and the buffering role of family cohesion on this association. A sample of emerging adults all of whom were massively multiplayer online (MMO) gamers (18–29 years) residing in Australia were assessed longitudinally (face-to-face: N = 61, Mage = 23.02 years, SD = 3.43) and cross-sectionally (online: N = 64, Mage = 23.34 years, SD = 3.39). IGD symptoms were assessed using the nine-item Internet Gaming Disorder Scale-Short Form (IGDS-SF9; Pontes & Griffiths Computers in Human Behavior, 45, 137–143. https://doi.org/10.1016/j.chb.2014.12.006, 2015). The Beck Anxiety Inventory (BAI; Beck and Steer, 1990) and the balanced family cohesion scale (BFC; Olson Journal of Marital & Family Therapy, 3(1) 64–80. https://doi.org/10.1111/j.1752-0606.2009.00175.x, 2011) were applied to assess anxiety and BFC levels, respectively. Linear regressions and moderation analyses confirmed that anxiety increased IGD risk and that BFC weakened the anxiety-related IGD risk

    The emergence of sedentary behaviour physiology and its effects on the cardiometabolic profile in young and older adults

    Get PDF
    It has recently emerged that sedentary behaviour is independent of a lack of physical activity as individuals can be sufficiently active, based on the recommended physical activity guidelines, but also spend the majority of their waking hours engaging in sedentary behaviour. Individuals who follow this pattern of physical activity and sedentary behaviour are known as ‘active couch potatoes’. Sedentary behaviour has been found to have detrimental effects on cardiometabolic markers associated with cardiovascular disease. Since the positive effects of moderate-to-vigorous intensity physical activity do not necessarily negate the deleterious effects of sedentary behaviour on cardiometabolic markers, it is postulated that engaging in light physical activity is an intervention that will successfully reduce levels of sedentary behaviour and may hence improve health markers of quality of life. We propose that such lifestyle changes may be particularly relevant to older populations as these engage in sedentary behaviour for the majority of their waking hours, thereby adding to the negative aging effect on cardiometabolic markers

    Functional imaging using fluorine ((19)F) MR methods: basic concepts

    Get PDF
    Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine ((19)F) MRI in biomedical research to study functional changes during disease states. (19)F MRI represents an instrumental tool for the quantification of exogenous (19)F substances in vivo. One of the major benefits of (19)F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous (19)F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of (19)F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis

    Software Carry-Save: A Case Study for Instruction-Level Parallelism

    No full text

    Further Properties of Cayley Digraphs and Their Applications to Interconnection Networks

    No full text
    In this short communication, we extend the known relationships between Cayley digraphs and their subgraphs and coset graphs with respect to subgroups and obtain some general results on homomorphism and distance between them. Intuitively, our results correspond to synthesizing alternative, more economical, interconnection networks by reducing the number of dimensions and/or link density of existing networks via mapping and pruning. We discuss applications of these results to well-known and useful interconnection networks such as hexagonal and honeycomb meshes
    corecore